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ABSTRACT 
We propose Auth+Track, a novel authentication model that aims 
to reduce redundant authentication in everyday smartphone usage. 
By sparse authentication and continuous tracking of the user’s 
status, Auth+Track eliminates the "gap" authentication between 
fragmented sessions and enables "Authentication Free when User 
is Around". To instantiate the Auth+Track model, we present Pan-
oTrack, a prototype that integrates body and near feld hand in-
formation for user tracking. We install a fsheye camera on the 
top of the phone to achieve a panoramic vision that can capture 
both user’s body and on-screen hands. Based on the captured video 
stream, we develop an algorithm to extract 1) features for user 
tracking, including body keypoints and their temporal and spatial 
association, near feld hand status, and 2) features for user identity 
assignment. The results of our user studies validate the feasibility 
of PanoTrack and demonstrate that Auth+Track not only improves 
the authentication efciency but also enhances user experiences 
with better usability. 

CCS CONCEPTS 
• Security and privacy → Security services; • Human-centered 
computing → Ubiquitous and mobile computing theory, concepts 
and paradigms. 
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Figure 1: (a) A user is authenticating and the Auth+Track 
system begins keeping track of the authenticated user. (b) 
The Auth+Track system continuously tracks the authenti-
cated user in multiple scenes: The user is working while the 
phone is placed on table; the user is using the phone; the user 
is gripping the phone and walking. When the user leaves 
the sensing range of the Auth+Track system, the phone au-
tomatically locks. 

1 INTRODUCTION 
Nowadays, smartphone authentication is indispensable to protect 
smartphone users’ data privacy. However, authentication itself is a 
tedious and time-consuming process for smartphone users. Numeri-
cal and textual password authentication, the original and most com-
monly adopted authentication form, requires tedious operations 
and high input delay [21], thus not optimal for mobile usage [58]. 
Although the procedure in biometric authentication techniques is 
simplifed, users are tired of repeating the authentication again and 
again [15, 60]. A recent study [23] shows that people spend 2.6 
minutes per day in authentication, and authentication procedures 
are unnecessary for smartphone users in 24.1% cases while [21] 
demonstrates that people perform 70.3 sessions (39.9 unlocks) per 
day, taking up 9% of time they use their smartphone. The evidence 
above reveals that current authentication procedures are not as 
intelligent as expected. The unnecessary process is perceptible to 
the user and may annoy the user. 

Many solutions have been proposed to reduce the unlocking 
burden. For example, Google released SmartLock [20] that lever-
ages activity recognition, trusted locations, and trusted devices, 
to achieve smart authentication, e.g., keeping the phone unlocked 
when there is a trusted smartwatch nearby. But this method re-
quires additional wearable devices. Moreover, a recent study by 
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Koushki et al. [44] shows that the misconceptions and difculty in 
learning the semantics of multi-modal and context-based unlocking 
impeded SmartLock techniques from being widely adopted. 

An alternative is an implicit authentication, also known as con-
tinuous authentication [50]. In previous literature, various implicit 
authentication methods based on user’s behavioral features (e.g., 
arm movement [35], gait [48], and keystroke actions [42]) have 
been proposed to reduce the burden of intentional authentication. 
For example, when someone picks up the phone, their "picking up" 
behavior is captured by built-in motion sensors and processed by a 
recognition algorithm. If the movement doesn’t match the control 
pattern of the authenticated user, the authentication system will 
block them from accessing the phone [35]. However, the shortcom-
ing of these methods is that the authentication accuracy is not high 
enough for practical usage in daily life [35, 42]. 

More importantly, most previous work treats each authentica-
tion procedure independently, i.e., the current authentication result, 
either explicit (e.g., entering a password) or implicit (e.g., inferring 
from arm movement), are not related to the past results [50]. How-
ever, when a user interacts with a phone, the usage procedure is 
continuous and temporally related. There are many cases where 
repeated authentication is unnecessary and cumbersome when tak-
ing historical information into account. For instance, when working 
on their laptops/PCs, users commonly put their phones besides but 
need to check incoming notifcations frequently. In such a scenario, 
both explicit and implicit techniques require repeated authenti-
cation, which is annoying because the phone should have been 
staying unlocked when sitting beside users. 

To address this problem, we propose Auth+Track, a novel au-
thentication model that goes beyond the existing implicit authen-
tication model, and enables "Authentication Free when User is 
Around" by introducing a continuous user tracking phase to op-
timize the authentication procedure. Instead of repeating authen-
tication in every session, a user only needs to authenticate once 
when starting to use their smartphone. The smartphone remains 
unlocked when the authenticated user is around, as the Auth+Track 
system automatically keeps track of the user’s body movement and 
accumulate historical tracking records to maintain secure authenti-
cation. Once the user leave the scene, or some malign users want 
to attack the phone (e.g., taking away the device), Auth+Track will 
lock the phone immediately. 

To instantiate Auth+Track authentication model, we present 
PanoTrack, a prototype of Auth+Track based on panoramic scene 
sensing. In PanoTrack, the status of the body and near feld hand is 
leveraged to control Auth+Track internal state transition logic. We 
install a fsheye camera on the top of a smartphone (see Figure 4) to 
achieve a panoramic vision of the surrounding scene, covering users’ 
bodies and on-screen hands. Based on the prototype, we develop an 
algorithm for authentication. The algorithm frst calculates near-
feld hand status, body keypoints, and the spatial and temporal 
relation of these keypoints at each frame. Then, it employs the 
foodfll algorithm to detect the connectivity between the phone 
and the body. Such a pipeline ensures the tracking robustness when 
there are multiple persons in the scene. 

We conducted two user studies to evaluate the tracking accuracy 
and the usability of our system. The results show that PanoTrack 
achieves satisfactory authentication accuracy in real-life scenes. 

Moreover, users provided positive feedback and rated signifcantly 
higher scores of subjective efciency, performance, and, willing to 
use. With emerging modern smartphones equipped with power-
efcient hardwares1, realtime, continuous user sensing and tracking 
on a smartphone is becoming feasible. We envision that Auth+Track 
can be easily adopted by smartphones in the near future. 

Our main contributions are summarized as follows: 
1) We propose Auth+Track, a novel authentication model that 

reduces redundant authentication by continuous user tracking, in 
order to reduce authentication efort. 

2) We present PanoTrack, an instantiation of Auth+Track. With 
a fsheye camera mounted on a smartphone’s top-front, we develop 
an algorithm to continuously track the user’s body movement and 
the relationship between the phone and the user. Our performance 
evaluation study demonstrates the good tracking accuracy of Pan-
oTrack. 

3) We conduct a second user study to evaluate the usability 
of PanoTrack in simulated real-life scenarios. Our results show 
that PanoTrack signifcantly accelerates the authentication process. 
Moreover, users provide positive comments on the Auth+Track 
authentication model. 

2 RELATED WORK 
We frst summarize the existing authentication methods and models 
on smartphones. We then review vision-based sensing and interac-
tion techniques. 

2.1 Smartphone Authentication 
Depending on a user’s awareness of being authenticated, current 
authentication methods can be categorized into explicit methods 
and implicit methods. Supported by these methods, many novel 
authentication models have been proposed. 

2.1.1 Explicit Authentication. Explicit authentication, the origi-
nal form of authentication, includes password methods (e.g., PINs 
[46, 59] and graphical patterns [59]) and biometric methods (e.g., 
fngerprint [25], face [2], and iris [34, 43, 55]). Password authenti-
cation methods have become standard on mobile phones. Intuitive 
numbers or graphical series that people can easily memorize, such 
as important dates, names, symmetric patterns, are frequently used 
as passwords. However, such prior information reduces the search 
space, making password authentication easy to break [13]. In addi-
tion to its vulnerability, these methods also ask for user’s explicit 
participation, which is tedious and time-consuming [13]. Biomet-
ric authentication methods identify the user based on biometric 
features, such as fngerprint, face, iris, and voice. Compared with 
password methods, these methods are more complicated and harder 
to break. Besides, biometric methods are more efcient, since the 
user doesn’t need to enter a long password sequence or draw a 
complex pattern. However, the user’s awareness of participation 
still exists, for example, when putting fngers on the fngerprint 
recognition module, or intentionally facing to the front camera. 
These acts can bother some smartphone users. 

In our work, Auth+Track reduces users’ burden by obviating 
redundant authentication. 
1For instance, HUAWEI Mate 30, released on September 26th, 2019, has an always-on 
camera that enables in-air gesture interaction 
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2.1.2 Implicit Authentication. Implicit authentication, also known 
as continuous authentication, is a novel concept proposed in recent 
years and aims to eliminate user’s awareness of the tedious au-
thentication procedure [50]. Implicit human behavior features like 
picking up the phone [35], gait [32, 48], stroke [63], face [39, 54], 
body posture [47], and voice identifcation [42] are considered when 
authenticating a user’s identity. Mauro et al. [13] proposed the idea 
of transparent authentication and modeled people’s behavioral fea-
ture when answering or placing a call with an accelerator and 
orientation sensor. Secure Pick Up [35] analyzed the user’s arm 
movement feature when picking up the phone with a smartphone 
built-in accelerator and gyroscope. DeepAuth [1] illustrated how 
to do implicit re-authentication in mobile apps based on built-in 
accelerator and gyroscope data. Papavasileiou et al. [48] developed 
transparent re-authentication techniques based on gait feature. We 
point users to a few comprehensive reviews of existing continu-
ous authentication techniques [19, 40, 50, 51]. In these transparent 
authentication techniques, smartphones serve as a proactive "ob-
server" to monitor a user’s behavior and model a user’s identity 
based on implicit behavioral information [51]. However, the major 
drawback that blocks these methods from commercialization is 
that these implicit methods are not as reliable as explicit authenti-
cation methods like password and fngerprint authentication. As 
we will show in the paper, our method achieved a more robust re-
sults compared to the state-of-the-art methods. Moreover, existing 
implicit techniques do not leverage historical authentication re-
sults efectively, thus still introducing cumbersome authentication 
process. 

2.1.3 Exploration of Novel Authentication Model. Previous work 
has discussed the balance between usability and security concern 
[21–23, 30, 41, 52, 60]. Consequently, many authentication models 
are proposed to optimize traditional authentication processes [5, 26, 
27, 53]. CASA [26] introduces an adaptive probability framework 
to choose appropriate authentication methods based on context 
dynamically. Progressive authentication [53] divided smartphone 
usage into 3 security levels (public, private, and confdential) and 
designed adaptive strategies for each level. SnapApp [5] develops a 
novel authentication concept by providing a time-constrained quick-
access option that bypasses "full access" authentication, which can 
reduce the authentication workload. All of the work focuses on 
redesigning authentication processes or the access control logic 
based on the existing authentication information. But most of them 
lack additional biometric or behavioral information that helps the 
system understand a user’s behavior to make more intelligent deci-
sions. Although progressive authentication [53] utilizes the sensors 
to capture certain behavior (accelerometers, light sensors, micro-
phones, and screens), its ability is limited in some common scenes, 
such as when the smartphone is put on the table (staying still). 

In contrast, Auth+Track proposes to continuously track the au-
thenticated user while they are around, which introduces a new 
"User Around" state in the authentication model. Our prototype 
PanoTrack can work in a wider range of scenarios. 

2.2 Vision based Sensing and Interaction 
Vision-based sensing and its corresponding interaction techniques 
are popular topics in HCI due to an image’s compact expression 

of panoramic scenes. In previous work, diferent sensing and in-
teraction techniques enabled by diferent hardware support are 
widely explored. Diferent hardware settings, like a RGB camera, a 
depth camera [9], a RGB camera + prism [62] and a fsheye camera 
[7, 8, 61], result in diferent sensing ranges and ability, and thus can 
capture diferent semantic information. Sensing information can 
be categorized into: 1) body-related information [8], such as head, 
limbs [8], and hand status [7, 62]; 2) object-related information [7]; 
and 3) the peripheral scene [8]. 

Based on the extracted semantic features of both the user’s body 
and environment, various active and passive interaction techniques 
have been developed. Active interaction techniques often integrate 
sensing information as a new input modality, e.g., fnger tracking 
for on-air cursor control [61, 62], object recognition for body-object 
interactions [61], and body-and-hand recognition for gesture-based 
interaction [7, 8]. What interests us is the interaction techniques 
enabled by these features for passive use. Previous work has tried 
to incorporate the human body and hand features as contextual in-
formation to build intelligent interaction applications. For example, 
hand gripping status has been used for dynamic layout [11, 37], au-
tomatic interface orientation switching [10], and adaptive keyboard 
decoding [18], while body status and movement have been used for 
location-based messaging, adaptive interfaces, and followable wid-
gets [61]. Our work is inspired by all these passive sensing designs 
and is the frst to utilize panoramic scene sensing information in 
authentication state control. 

3 AUTH+TRACK 
We frst illustrate the detailed concept of "Authentication Free when 
User is Around", a novel sensing goal that leads to a more intelligent 
authentication process. We then formally introduce Auth+Track, 
a novel authentication model that combines authentication and 
continuous user tracking, aiming to achieve the goal. Finally, we 
show how the internal state of Auth+Track transits through a state 
transition graph. 

3.1 Authentication Free when User is Around 
Explicit authentication is a tedious and time-consuming process. 
To illustrate how redundant current smartphone authentication is, 
we frst discuss two common scenes. 

Scenario 1: Static Scenario. Alice is working in the ofce, sit-
ting at her desk, and her smartphone rests beside on the desk. Every 
time she wants to access her phone, she picks up the phone and 
deliberately faces the phone to authenticate. She texts a short mes-
sage and places the phone back on the desk – the phone locks in 
a minute. The next time she want to access the phone, she need 
to authenticate again. In this case, repeated authentication is un-
necessary because the phone remains around the user and under 
control. 

Scenario 2: Mobile Scenario. Bob is engaged in a multi-round, 
real-time messaging exchange with his friend while holding the 
phone in his hand. Every time he sends a message, he waits for 
the friend’s reply. If he waits for more than a minute, the phone 
locks. He then needs to authenticate again to read new messages 
and reply. This is bothersome and inefcient because the phone 
remains on the hand. 
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In both cases, redundant authentication happens due to the lack 
of awareness of the user’s status. In traditional lock-unlock proce-
dures on smartphones, the phone remains unlocked when it detects 
touches [20] or the behavior profle that belongs to the owner [50]. 
However, this criterion is not perfect. Sometimes, a user would like 
to keep the phone unlocked when the phone is under their control 
but is not necessarily being used for now. 

Therefore, introducing a "user around" state as an active signal 
could make traditional lock-unlock processes more smooth and 
natural. When a user is in a "user around" state, they are sufciently 
aware of the smartphone [33]. Therefore, putting the user into 
an "authentication free" status, where the phone keeps unlocked, 
can help reduce the redundancy of authentication. Based on these 
conjectures, we defne our authentication goal as "Authentication 
Free when User is Around", which guides the exploration of more 
intelligent lock-unlock procedures. 

"User around", meaning user being around and in charge of the 
device, can be defned based on the smartphone’s positional relation 
with the user. Generally, user-phone relation falls into one of the 
following scenarios: in-use scenario, put-aside scenario, gripping 
scenario, pocket scenario, and leaving-away scenario. 

"In use" means the user is directly sending instructions to (e.g., 
touching the screen, clicking a physical button) or receiving in-
formation from (e.g., listening to a phone call) the phone. When 
the user has no intention to interact, while still in charge of the 
phone, his positional relation with the phone falls into one of the 
three states: 1) Putting aside. The user puts the phone on a static 
object around him (within certain distance, e.g., 2m). 2) Gripping. 
The user is gripping the phone on his hand (while not using it). 
3) Pocket. The user put the phone into a carry-on container (e.g., 
his pocket or bag). "Away" means the user leaves away from the 
phone for certain distance (e.g., 4m) or is separated with the phone 
by physical barriers (e.g., a wall), no longer in charge of the phone. 

We briefy summarize the status and the possible sensing ap-
proaches of each scenario in Table 1. A "user around" state covers 
put-aside, gripping, and pocket scenarios. We are interested how 
a user in a "user around" state can be sensed. For "put aside" and 
"gripping", pixel-wise information captured by phone camera indi-
cating a user’s identity, including the face, hands, and body, can be 
sensed and tracked, while for "pocket", visual evidence is limited 
to illumination. For "gripping" and "pocket", specifc patterns (e.g., 
gait [1] and a picking-up gesture [35]) from motion data can be 
used to infer the identity of the user. 

Reducing Redundant Authentications by Continuous User Track-
ing Smartphone usage sessions are fragmented, resulting in numer-
ous "gap authentications". To alleviate unnecessary repetitions, an 
intuitive approach is to bond the fragmented sessions into a single 
continuous and coherent session [50]. However, previous work 
does not cover the "user around" state, which can be leveraged to 
augment the authentication model. Such a "user around" state can 
be determined by continuously tracking a user’s body movement 
and hand behavior. Note that before enabling continuous tracking, 
a "gateway" authentication should be performed to verify the user’s 
identity. 

We propose a new model that combines the "gateway" authen-
tication phase and the continuous body tracking phase, called 
Auth+Track. A user only needs to authenticate once when starting 

Scenario Status Possible Sensing Approaches 
In Use 

Put Aside 
User on 

User around 
Camera, motion sensor, and touchscreen 

Camera 
Gripping 
Pocket 
Away 

User around 
User around 
User of 

Camera, motion sensor 
Illumination sensor, motion sensor 

– 

Table 1: Diferent scenarios of smartphone usages. 

to use the smartphone. Then, the phone automatically keeps track 
of the user’s body movement. As long as the user is successfully 
tracked, the smartphone remains unlocked. We discuss the two 
phases in detail below. 

3.1.1 Authentication: A Secure "Gateway". In Auth+Track, the au-
thentication phase serves as a secure gateway to access the phone. 
Diferent feed-forward authentication methods, such as password, 
fngerprint, iris, or face, can be used in this phase. A user’s be-
havioral features vary when they use diferent feed-forward meth-
ods. When using the iris or face, the user’s face can be captured. 
When using a fngerprint or password, the connectivity between 
the user’s body, hand, and phone can be detected. These features 
serve as the key prerequisite information for the next tracking 
phase. Auth+Track system frst assigns the verifed identity to the 
user and then leverages these features (depending on which method 
is adopted) to continuously track the user. Accurate user identity 
assignment is essential because it helps to determine which person 
is the authenticated user when there are multiple persons in the 
scene. 

3.1.2 Tracking: Continuous Track of User’s Behavior. Robust user 
tracking is crucial to achieving the goal of "Authentication Free 
when User is Around". After assigning the user’s identity, Auth+Track 
runs a continuous tracking procedure to keep track of the authenti-
cated user’s status, which includes the system’s tracking informa-
tion, the range, and the user condition. 

These variables change under diferent sensor solutions. Possible 
sensor options include capacitive sensors [29], on-device motion 
sensors [45, 49], on-screen cameras (modality: RGB [61], IR sensors 
[56], depth sensors [9]; range sensors [62], fsheye cameras [7]), 
and third-person perspective cameras [12]. Each sensor has its pros 
and cons. While capacitive sensors and built-in motion sensors are 
convenient and computationally friendly, they can’t sense pixel-
wise information or distant behavior. The on-screen camera can 
capture pixel-wise information, but the sensing range is limited by 
hardware constraints and the surrounding environment. 

We categorize "tracking" into four types according to the range: 
1) on-device tracking (i.e., tracking occurring while in contact with 
the device); 2) near feld tracking (<10cm); 3) around-device track-
ing (0-2m); and 4) full-scene tracking. Although a motion sensor 
and a capacitive sensor and achieve the frst two tracking types 
respectively, the ranges are too small to be practical. A third per-
spective camera can capture the full scene, but it is not suitable 
in mobile cases and has privacy issues. Therefore, we adopt the 
around-device tracking for continuous user tracking. 

3.1.3 Threat Model. When either of the user assignment or user 
tracking fails, a conservative strategy would be to deactivate Auth+ 
Track, resulting in a normal smartphone usage session without 
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Auth+Track. An attacker can attempt to cheat the system by de-
liberately inducing a misassignment or mistracking of the system. 
Therefore, for any implementation of Auth+Track, robustness in 
complex environments and the face of deliberate attacks is essential 
for a successful tracking phase. 

3.2 Auth+Track State Transition Graph 
In a traditional authentication procedure (Figure 2a), only three 
states ("User On," "Idle," and "Locked") are recognized. In contrast, 
Auth+Track separates the "Idle" state into two states – "User Around" 
and "User Of" – to better represent the full status of users. In 
Auth+Track, the state of "User Around" is introduced to distinguish 
a user’s status as being around-device or being absent. The state 
transition graph illustrates the overall workfow of Auth+Track, as 
shown in Figure 2b. Compared with the traditional authentication 
model where only touch or "operation" can be recognized for "User 
On" state, Auth+Track takes advantage of the perception of the sur-
rounding environment and the user’s behavior, leading to a more 
precise representation of a user’s status. 

4 PANOTRACK: AN INSTANTIATION OF 
AUTH+TRACK 

In this section, we present PanoTrack, a prototypical instantia-
tion of the Auth+Track authentication model. In PanoTrack, two 
categories of information – body movement and near-feld hand 
status – are tracked by an on-device camera, since they are the 
most informative and identifable for indicating a users’ position 
and behavior. 

PanoTrack provides a strong sensing capability to capture both 
the user’s body movement and the near-feld hand status. After 
extracting these key features, we design the detailed control logic, 
i.e., how the PanoTrack system integrates these features to control 

a phone’s state transition logic. Based on how the detected features 
are used to form the state transition logic of PanoTrack, we propose 
three strategies: hand-only strategy, body-only strategy, and mixed 
strategy. 

4.1 Hand-Only Strategy 
The most straightforward feature to indicate whether the user is 
in charge of the phone is to detect whether they are gripping, 
grasping, or touching the phone, which can be captured by the 
PanoTrack system. An intuitive strategy is that if a "hand-on" signal 
(gripping, grasping, and touching) is detected, the phone will not 
automatically lock. However, the main drawback of only using hand 
information is ambiguity. If there is a release between two "hand-
on" signals, we cannot judge whether the two "hand-on" signals 
are generated by the same user (i.e., the authenticated one). For 
security reasons, in our design of a hand-only strategy, if there is a 
release between two "hand-on" signals, the latter one is deactivated. 
In the PanoTrack hand-only strategy, after authentication, the hand 
status is continuously tracked. Once the user releases the phone, 
the tracking is lost. Though this strategy is conservative, it can 
cover most mobile cases, e.g., using the phone on the road. 

4.2 Body-Only Strategy 
Compared with near-feld hand status, a user’s body movement 
detected by the PanoTrack system is a more comprehensive and 
reliable feature that indicates whether the user is around. The Pan-
oTrack body-only strategy is designed based on a user’s body fea-
tures, including the body keypoints and their spatial and temporal 
relationship. After authentication, the PanoTrack system frst as-
signs an identity to the authenticated user, and then continuously 
tracks the user. When the assignment fnishes, the global state of 
the phone turns from "unauthenticated" to "authenticated". If the 

(a) Existing auth model’s state transition graph (b) The Auth+Track model’s state transition graph 

Figure 2: Authentication Model Comparison. (b) Auth+Track splits the "Idle" state in (a) traditional authentication model into 
two states – "User Around" and "User Of" – to distinguish a user’s status as being around-device or being absent. 
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Body + HandBody Only Hand Only

Body Tracking Fails Hand-Off Detected

Identity Lost and Pre-lock

Hand-Off Detected

Authentication

Hand-On + 
Body Tracked

Body Tracked Hand-On

Body Re-Assignment

Hand-On Body Lost

Figure 3: State Transition of PanoTrack Mixed Strategy. Af-
ter authentication, based on the tracking information, the 
user falls into one of the three states: body-only, body+hand, 
and hand-only. The tracking state switches organically 
based on the relative status between the user and the phone. 

tracking succeeds, the global state remains "authenticated". Once 
the tracking fails (e.g., the user leaves), the global state changes to 
a "lost" state. When the phone is in a "lost" state, the standard lock 
procedure initiates, i.e., idling for several seconds, and then locking. 
Typically, ofce scenes where smartphone sits still on a desk ft 
well with this strategy. 

4.3 Mixed Strategy 
Though the two strategies mentioned above perform well in specifc 
scenes, they have relatively low detection rates in general cases. 
For example, body tracking in mobile cases quickly fails because of 
the motion blurring or the absence of a body when a user holds the 
phone. Similarly, near-feld hand status information cannot cope 
with cases when a hand is absent. To overcome the shortcomings 
above, we propose a mixed strategy that makes full use of both hand 
and body features. The key idea to merge a body-only strategy and a 
hand-only strategy is to reinforce the vitality of one strategy based 
on the other - making the tracking procedure harder to deactivate. 
The reinforcement strategy can be divided into "hand-to-body" 
phase and "body-to-hand" phase. 

A "hand-to-body" phase focuses on tracking the scene when a 
body is absent from the camera’s feld of view, e.g., a user is gripping 
the phone and walking. When an activated "hand-on" signal is 
detected, even if a user’s body is untracked or lost, the tracking can 
be recovered. The authenticated identity is reassigned when the 
camera system detects the following: 1) a stable center-oriented face 
close enough to the camera; and 2) connectivity between a user’s 
on-screen hand and the user’s body. The reassignment of tracking 
is reliable and secure in identifying the authenticated user because 
a "hand-on" signal is tethered to the identity of the hand. And 
the hand-body connectivity assignment and a center-oriented face 
assignment assures the relation between the hand in the camera’s 
feld of view and the captured body. 

"Body-to-hand" phase aims to deal with the situation when there 
is no hand in a camera’s feld of view. In the hand-only strategy, if 

Figure 4: Left: Our hardware prototype. The sensing range 
is 140◦ (vertical) × 360◦ (rotational). Right: Captured image 
(640 × 480) can be divided into 2 regions: near feld region 
(red) for hand gesture recognition and major region (blue) 
for user tracking. 

there is a release between two "hand-on" signals, the latter is deacti-
vated, which is not long-lasting. In the "body-to-hand" phase, body 
identity helps to activate a deactivated "hand-on" signal even if it ap-
pears after release. Specifcally, when the authenticated user’s body 
is successfully tracked, and then a "hand-on" signal emerges, the 
connectivity between the smartphone, hand, and body is activated. 
For example, when an authenticated user grasps his/her phone from 
the desk, if connectivity is detected, the system status proceeds 
into "hand mode", and the hand status is continuously tracked. The 
security of the re-activation is ensured because an "authenticated 
body" is always connected to an "authenticated hand". 

Figure 3 shows the relation between hand mode and body mode 
and the transition logic between them. By applying a mixed strategy, 
the true detection rate in the wild can be improved while security 
is ensured. 

5 PANOTRACK: HARDWARE 
In this section, we describe the detailed hardware design of Pan-
oTrack and explain how to achieve panoramic scene sensing that 
can capture both a body and an on-screen hand. 

5.1 Camera Setting and Sensing Range 
To enable panoramic vision that can capture both user-oriented 
scenes and peripheral scenes, we chose a dual-mode 160◦ fsheye 
camera as a proof-of-concept sensor. The camera is fxed to the 
top of the phone, simulating a potential camera position in future 
smartphones. To capture clearer on-screen hands and reduce unre-
lated environment in the peripheral area, we tilted the camera 30◦ 

to the bottom. The valid FoV of the fsheye camera is 140◦(vertical) 
× 360◦(rotational). To achieve the around-device tracking, the ex-
pected sensing radius for is 2m. In Panotrack, the valid sensing 
radius is 4m to capture a clear human body. 

5.2 PanoTrack Hardware Prototype 
We used a Samsung Galaxy S9+ smartphone (CPU, RAM: 4GB) with 
a 5.8-inch touchscreen running Android 7.0. The phone was fxed 
to a 3D-printed stand with a dual-mode 160-degree fsheye camera 
on the top. The resolution of the output video stream is 640 × 480, 
and the FPS is 30. 

We implemented PanoTrack’s algorithm in a PC server with 
a GTX 2080Ti NVIDIA GPU with 11GB memory. The algorithm 
pipeline is implemented in Python and pyTorch. The PanoTrack 
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Figure 5: Our algorithm pipeline. First, we extracted near-feld hand regions from the original image. Then we extract all the 
keypoints and their spatial and temporal connections using a CNN-based model. Simultaneously, we predict near-feld hand 
status with a classifcation model. Finally, we merge body detection results and the hand status classifcation result to calculate 
high-level semantic information. 

system on the smartphone was implemented on an Android app that 
runs in the background to control the lock-unlock logic. The fsheye 
camera was connected to the PC server. The PC server processed 
the video stream captured by the fsheye camera, analyzed the vital 
information, and sent commands to the smartphone via WiFi in 
real-time. 

6 PANOTRACK: ALGORITHM 
With the video stream captured by the fsheye camera as input, 
the algorithm aims to output human keypoints, the spatial and 
temporal relation of the keypoints, and near-feld hand status of 
every frame. PanoTrack can track the user’s body movement, detect 
the near-feld hand, and control the authentication status in real-
time. 

As shown in Figure 5, our algorithm pipeline consists of four 
parts: preprocessing, continuous body tracking, near-feld hand 
behavior detection, and user-identity assignment. Given an image 
captured by the fsheye camera, the pipeline frst extracted a fxed 
region in the image for near-feld hand detection. Next, a convo-
lutional neural network (CNN) model was applied to acquire all 
the keypoints and their spatial connections. These keypoints were 
then associated temporally based on a tracking algorithm. Simulta-
neously, a near-feld hand status was predicted by a classifcation 
model. Finally, the detected body keypoints and near-feld hand 
status were used to calculate user identity features including head 
orientation, head distance and hand connectivity for user identity 
assignment. 

6.1 Preprocessing 
Since the smartphone was in a fxed area in the image, the near-
feld hand gestures (such as gripping, grasping, and touching) were 
limited to a specifc area. For better recognition of near feld hand 
gestures, we pre-fetched the near feld region of the smartphone 
in the image. To empirically determine the area, we collected 100 
images of various hand gestures through a pilot study and manually 
labeled the hand area of each image. The fnal region boundary is 
the union of the labeled region (see Figure 4). 

6.2 Continuous Body Tracking 
The next step of our algorithm pipeline was to track human bodies 
in the video stream, outputting all the keypoints and their spatial 
and temporal relationships. 

6.2.1 Body Keypoints and Association Detection. We use a CNN-
based model to predict the keypoints of body parts in each frame. 
In our implementation, a pre-trained MobileNet V3 [31] was used 
as the backbone network for image feature extraction. We followed 
Cao[6]’s idea to decompose the mission of predicting body key-
points and their connections into predicting confdence maps of 
every keypoint and part afnity felds (PAFs) of every limb. After 
confdence prediction and PAF regression, we extracted all the local 
maxima with high confdence scores as keypoints and applied a 
biparty graph matching algorithm to predict the optimized joint 
connection. We fne-tuned the model on the COCO 2017 dataset 
[38]. 

6.2.2 Temporal Tracking. By applying the model above, we ascer-
tained the optimized keypoints and skeletons for each independent 
frame. We proposed a method to associate the detected keypoints 
in time domain. Given the keypoints and their spacial association, 
we frst organized the result in entity-based perspectives, i.e., each 
image contains a set of entity-based structures, and each structure 
stores keypoints, associations, and confdence maps of the entity. 
For each entity (person) in the current frame, we calculated the 
probability that it is consistent with another entity in some previous 
frames by: 

p = exp(− Ñλ Õ 
| |Vi,k,n − Vj,l,n | |

2)
|Si,k Sj,l | Ñ 

n ∈Si,k Sj, l 

where Sa,b denotes the valid joint set of the bth person in frame 
a. Va,b,c denotes the position of the cth joint of the bth person in 
frame a. λ is a scaling parameter. If probability p > ϵ and |i − j | ≤ T , 
we assigned the identity of the kth person in frame i to the lth 

person in frame j. We set λ = 10−5, ϵ = 0.9 and T = 5 based on the 
pilot study. 
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6.3 Hand Behavior Detection 
For hand-behavior detection, we distinguished the following four 
near-feld hand statuses: hand-of, gripping, grasping, and touching. 
Taking the near-feld hand region as input, we used a pre-trained 
MobileNet V3 [31] model to extract the graphical features of this 
region and then classify it with a multi-layer perceptron (MLP). We 
initialize the MobileNet V3 layers with pre-trained parameters and 
the MLP layers with normalized random parameters [28]. Then we 
fne-tuned the MLP parameters and the MobileNet V3 parameters 
with Adam optimizer. 

To alleviate the misrecognition caused by blurred frames and to 
improve prediction confdence and smoothness when determining 
the label of the current frame, we took the recognition results of 
the previous 2K (K=2) frames into account. The smoothed label was 
the voting result of the majority of local predictions of these 2K + 1 
frames. 

6.4 User Identity Assignment 
The body and hand features acquired from previous steps were 
further used to extract three high-level semantic features: head 
orientation, head distance from the camera, and the connectivity 
between body, hand, and phone. 

The head orientation, and distance features were used for im-
mediate user identity assignment after authentication, while the 
connectivity was used for "hand-to-body" or "body-to-hand" re-
assignment in the mixed strategy (see Figure 3). 

6.4.1 Head Orientation and Distance. The nose, left ear, left eye, 
right ear, and right eye were the fve keypoints that the body key-
point detection model output. These keypoints were used to esti-
mate the user’s head orientation along three axes (vertical, horizon-
tal, and rotational) and the distance of the head from the camera. 

We defne the bias level in 3 axises as: 
(Xlear − Xnose ) · (Xr ear − Xnose )

bver t ical = 1 + 
| |Xlear − Xnose | | · | |Xr ear − Xnose | | 

| | |Xlear − Xleye | | − | |Xr ear − Xr eye | | | 
bhor izontal = 

| | |Xlear − Xleye | | + | |Xr ear − Xr eye | | | 
′ Xx + ϵ Xleye + Xr eye′ = , X =brotational ′ − Xnose 

Xy + ϵ 2 
′where X∗ denotes the 2D coordinate of feature point ∗, and Xx 

′ ′(Xy ) denotes x(y)-coordinate of point X . ϵ is a smooth factor. If 
|bver ticle | < ϵ1 and |bhor izontal | < ϵ2 and |brotational | < ϵ3, the 
head is detected as "center-oriented". We set ϵ1 = 0.5, ϵ2 = 0.1, 
and ϵ3 = 0.5 based on a pilot study. Similarly, we used | |Xlear − 
Xleye | | + | |Xr ear − Xr eye | | to estimate the distance of the user’s 
head from the camera. 

6.4.2 Connectivity. To detect the connectivity between body, hand, 
and phone, we developed a strategy based on foodfll algorithm. 
We choose the wrist keypoints detected by body tracking algorithm 
as the seeds and apply foodfll algorithm (using OpenCV [4]) in 
RGB color space, with an empirical lower diference threshold of 
L = (15, 15, 15) and an upper threshold of H = (20, 20, 20). Starting 
from the seed points, the algorithm recursively selects the points 
adjacent to the selected points whose color is within the range of 
(Cselected − L,Cselected + H ) until no new points can be selected. 

After running foodfll algorithm, we found the connected areas 
which include all the wrist keypoints. To judge whether there is 
connectivity between body, hand, and phone, we detected whether 
the expanded areas touch or are close enough to the smartphone 
boundary. 

By continuously extracting the head and connectivity features, 
the algorithm can keep track of the user’s identity and the relation 
between the phone and the user after authentication. 

6.5 Efciency Analysis 
Currently, our pipeline runs 23 FPS: 4 ms for image fetching and 
preprocessing, 19 ms for body keypoint detection, 7 ms for hand 
status classifcation, 5 ms for the calculation of temporal features, 
head features and connectivity, and the rest for real-time visual 
feedback rendering. Note that our prototypical implementation 
could be optimized by 1) disabling visual feedback provision and 
2) merging the mutual frontend network of the keypoint detection 
model and the classifcation model, the theoretical optimal FPS 
for calculation should be over 30, which is beyond the camera’s 
streaming constraint. 

7 STUDY 1: ALGORITHM COMPONENT 
EVALUATION 

We frst conducted an user study to evaluate the performance of 
each component in the PanoTrack algorithm pipeline: 1) body key-
point detection, 2) near feld hand status classifcation, and 3) user 
identity assignment. 

7.1 Participants and Apparatus 
We recruited 10 participants (7 males) from the local campus. The 
average age of all participants was 23.0 (SD=1.34). All participants 
were familiar with the face authentication method, which we used 
as the explicit method in this study. The apparatus was the same as 
described in 5.2 and Figure 4. 

7.2 Evaluation Metrics 
For body keypoint detection, we measured the recognition accuracy, 
precision, and recall of users from individual sampled frames at 
diferent distances. For near feld hand status classifcation, we 
measured the accuracy of both 2-class classifcation (hand-on and 
hand-of) and 4-class classifcation (hand-of, grasping, gripping, 
and operating). For the user identity assignment, we measured the 
accuracy of the assignment when the users unlocked the phone. 

7.3 Data Collection 
We collect the data by asking participants to perform specifc tasks 
with video recording turned on. Participants went through a brief 
introduction of each task and signed the consent form. 

First, we collected body data in diferent distances, which is used 
to validate the keypoint detection NN model described in Section 
6.2.1. Participants were asked to perform free form movement in 
three distances: 1) < 1m, 2) ≈ 2m, and 3) ≈ 4m and we recorded a 
60-second video for each participant in each distance. 

Then we collected four types of hand status data: 1) hand-of-
screen, 2) hand-grasping, 3) hand-gripping, and 4) hand-operating, 
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Distance ≤ 1m ≈ 2m ≈ 4m 
Accuracy 99.4% 99.2% 81.6% 
Precision 100.0% 100.0% 97.4% w Smooth w/o Smooth 
Recall 99.4% 99.2% 83.4% 2-Class 99.9% 99.7% 

4-Class 97.5% 96.1%Table 2: Body detection 
accuracy in diferent dis- Table 3: Hand status classi-
tances. fcation accuracy. 

to evaluate the hand status classifcation model described in Section 
6.3. Participants were asked to perform each hand gesture and 
recorded a 60-second video for each gesture. 

Finally, we collected data about standard authentication to eval-
uate our user identity assignment algorithm (Section 6.4). With 
PanoTrack turned on, each participant was asked to perform 20 au-
thentication attempts (10 with the phone on table, and 10 with the 
phone in hand) with video recorded. The whole procedure about 
20 minutes for each participant. 

7.4 Result 
We present our results of separate PanoTrack algorithm pipeline 
components as below. 

7.4.1 Body Detection. To evaluate the performance of body detec-
tion on individual frames, we uniformly sampled 500 frames (out 
of 10 × 60 × 30 = 18000 frames) from the captured videos for each 
distance (≤ 1m, ≈ 2m, and ≈ 4m). We manually labeled whether the 
body keypoints were correctly detected in each frame based on the 
following criterion: A sample was labeled positive when and only 
when all the body parts in the image and their proper association 
are correctly detected by the model while yielding no false posi-
tives for non-body parts. Table 2 shows the accuracy, along with 
precision and recall, of our body detection model. The detection 
accuracy can reach almost 100% (99.4% for ≤ 1m and 99.2% ≈ 2m) 
when user is within 2 meters, showing the robustness of our body 
detection model in near range. The results also show high precision 
in diferent distances (Even in ≈ 4m, our model has a high precision 
of 97.4%), meaning our model would hardly yield a false positive 
sample (e.g., recognizing an object in the scene as a body part). 

7.4.2 Hand Status Classification. We applied a 10-fold cross-validation 
procedure to evaluate our model for hand status classifcation. In 
each fold, one of the participants’ was left out as test data. The rest 
of the data was randomly split into a training set (8 persons) and a 
validation set (1 person). We trained our model on the training set, 
chose the epoch that maximized the model’s accuracy on the valida-
tion set, and tested the model in the test set. The result is shown in 
Table 3. In 2-class classifcation (hand-on and hand-of), our model 
reached an accuracy of 99.72%, while the accuracy of 4-class clas-
sifcation (hand-of, grasping, gripping, and operating) is 96.10%. 
The error in 4-class classifcation mainly came from the confusion 
between gripping and operating data (some of the operating ges-
tures are similar to gripping gestures). By enabling the smoothing 
procedure, the accuracy was much higher (2-class: 99.94%, 4-class: 
97.52%) after a signifcant portion of blurred frames were fltered. 

7.4.3 User Identity Assignment. The overall success rate of in-hand 
authentication assignment was 100% (100 / 100), while the overall 
success rate of an on-table authentication assignment was 97% (97 
/ 100). The result was within our expectation since when users are 

Figure 6: Data sample in diferent scenes: (a) in the lab/ofce; 
(b) in the street; (c) in the cafe. 

authenticating with the phone in hand, their face will probably 
in the center of the image, covering the major area of the image, 
making the assignment hard to fail. We analyzed the three negative 
samples and found that two of them failed because of improper 
distance or orientation: one user was far away from the camera, 
and the other had a 70◦ improper orientation. In the third case, the 
system wrongly assigned another person in the scene because there 
were two people evenly close to and facing the phone. These three 
samples could be easily resolved if the face position – detected by 
the phone’s Face ID system when they unlocked the phone – was 
available to us, since this would provide the initial tracking point 
and enable PanoTrack to robustly tracking the user body. Due to 
the hardware limitation, we could not access the Face ID system 
detection results. But our observation indicates that the negative 
samples can be avoided once this limitation is relaxed. We will 
elaborate more on this in the discussion section. 

8 STUDY 2: PERFORMANCE EVALUATION 
We conducted a further study to evaluate the overall performance 
of the PanoTrack system in multiple real-life scenes. 

8.1 Participants and Apparatus 
We recruited 14 participants (7 males). The average age of Group 2 
was 20.6 (SD=1.34). All participants use a touchscreen smartphone 
on a daily basis for more than four years. Same as Study 1, we used 
face authentication as the explicit method, with which all partici-
pants were all familiar. The apparatus was the same as described in 
5.2 and Figure 4. 

8.2 Evaluation Metrics 
We measured the count of succeeded, failed, and wrong tracking, 
from which we can calculate precision: the percentage of correct 
authentication among all authenticated cases, and recall: the per-
centage of true authentications that are correctly recognized. The 
precision indicates how robust the system is against attackers and 
environmental interferences. Lower precision means that there are 
more cases other people will be mis-recognized as the authenticated 
user. The recall indicates how much the system can efectively re-
duce authentication times. Lower recall means that there are more 
cases the authenticated user is not tracked by the system and re-
quires the user to re-authenticate. 

8.3 Data Collection 
We were interested in how well PanoTrack tracks the users when 
they were performing diferent tasks in diferent real-life scenarios. 
So we asked the participants to perform daily tasks and evaluate 
the performance of PanoTrack in these tasks. 
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After signing the consent form, participants were instructed to 
perform 7 tasks close to real-life activities (Table 4) in three common 
scenes: lab/ofce, street, and cafe (Figure 6). These scenes cover 
both indoor and outdoor sites, and the tasks covers daily activities 
of work, commuting, and entertainment, while covering the most 
relative status and movements between the user and the phone. 
Each task took about 20 seconds and was repeated 3 times. Before 
acting each scene, participants authenticated once to ensure they 
were successfully tracked at the beginning. 

It is worth emphasizing that, to enhance the diversity of our 
data and make it closer to real-life scenarios, 1) we required the 
participants to test in a crowded environment and expected that 
at least two or more disturbers will appear in the background. 
2) participants could perform open-form gestures based on their 
understanding for a same task. For example, for the task 6 (out 
of camera sight) in Table 4, participants could either walk out 
of view or put the phone in their pockets. 3) Moreover, our data 
covered the setting where users switch between scenes organically 
(e.g., switching from a face-oriented state to a hand-held state by 
performing task #5). 

During the study, tracking succeeded count, tracking failed count 
and wrong tracking count in these scenes were recorded. All tasks 
mentioned above were randomized within each session to remove 
the order efect. The study took about 30 minutes for each partici-
pant. 

8.4 Result 
We present our results of PanoTrack’s overall performance in dif-
ferent scenes as below. 

8.4.1 Analysis of Tracking Performance in Diferent Scenes and 
Tasks. The seven tasks in Table 4 were chosen based on people’s 
daily smartphone usage. We categorized these tasks into two groups 
based on the phone’s status: on a table-like static surface (abbrevi-
ated as on table) and in hand. These tasks covered most of phone 
interaction space. Table 4 summarizes the counts of succeeded, 
failed, and wrong tracking of diferent tasks in the diferent scenes. 

Overall, PanoTrack had a high detection precision (99.5%) and 
recall (94.7%) for around-the-device tasks (1-5) in the three scenes. 
It achieved a 99.6% tracking precision for on-table tasks (1-2) and 
99.4% for in-hand tasks (3-5), meaning the system would robustly 
track users no matter the phone is on table or in hand. 

We found that the tracking recall varied between diferent tasks. 
The recall of on-table tasks was 97.2%, while that of in-hand tasks 
was 93.1%. The diference was mainly caused by the phone’s motion. 
When the user was gripping the phone, the feld of view of the 
camera changed more frequently, leading to motion blurring and 
body segments being out of sight. We also tested whether the 
tracking would be correctly disabled once the user left out of camera 
sight by introducing a "out of camera sight" task (#6 in Table 4). 
In such task, PanoTrack robustly recognized the user’s leaving 
behavior and had a precision of 98.4%. To further evaluate the 
tracking robustness in edge cases, we also tested our system in an 
"leaving away (≈ 4m) and back" task (#7 in Table 4). In this task, 
the precision was 95.3% and the recall was 83.5%. We found that 
tracking failures occurred more often in task 7 due to low image 
resolution, while the system still kept a low mis-tracking rate 4.7%. 

Other mis-tracking cases were mainly caused by body obstruction 
from other disturbers and the wrong detection in body keypoints. 

We also noticed the performance of PanoTrack varied regarding 
diferent scenes. In the street or cafe, the recognition precision is 
100% for almost all tasks. PanoTrack performed accurate tracking 
without yielding any failure or mis-tracking under these two scenes. 
However, in the lab/ofce scene, the overall precision was not 
perfect (although it was also high). The space of the lab/ofce 
was small and crowded (Figure 6 (a)), as a result, the infuence of 
disturbers was more signifcant in such scene (lab/ofce) than in 
other scenes, leading to a decrease in tracking precision. In addition, 
we found the tracking recall of in-the-street scene is signifcantly 
lower (90.5%) than that of the others. Analysis on the negative 
sample revealed the main reason: the body detection accuracy was 
greatly afected by the overexposure of the camera. 

8.4.2 Comparison with Implicit Solutions. State-of-the-art implicit 
authentication methods used diferent modalities, such as phone 
motion (99.2% precision, 92.4% recall [1]), touch stroke (95.0% pre-
cision [63]), application usage (97.8% precision [36]), and front 
camera captured face images (76.15% accuracy [39]). We summa-
rized the behaviors, sensing ranges, sensing modalities, dataset 
characteristics, and performances (precision, recall, F-1 score, and 
accuracy) of these methods along with PanoTrack in Table 5 to form 
a comprehensive comparison and settle the boundary of diferent 
methods. 

From the table, we found that motion-based (e.g., accelerometer 
and gyroscope) and touch-based methods [1, 35, 63] have high accu-
racy. But their sensing range is limited to on-body or on-screen and 
the user’s behavioral constraint is stricter (e.g., walking, picking up 
the phone, or touching the screen). PanoTrack achieves comparative 
performance (F-1 Score: 97.0% (PanoTrack) v.s. 95.8%(DeepAuth [1]); 
Accuracy: 94.3% (PanoTrack) v.s. 96.3% (SecurePickUp [35])) while 
having broader sensing range (≤ 2m) and more relaxed behavioral 
restriction. However, PanoTrack is limited when the fsheye cam-
era cannot captured the body or the hand of the user (e.g., in the 
pocket), where motion-based methods work well. Therefore, one 
promising future work direction of PanoTrack is to incorporate 
complementary motion sensors (e.g., IMU) so that its capability 
could be further enhanced. 

Compared with existing vision-based methods [39, 54], Pan-
oTrack achieved signifcantly better results (F-1 Score: 97.0%(Pan-
oTrack) v.s. 82.8%(UMDAA-02 Face [39])) than the baselines. The 
improvement benefts from: 1) stronger hardware settings (160◦ 

FoV v.s. normal FoV, 30 FPS v.s. 3 FPS) and 2) fne-grained algorithm 
pipeline design (temporal body+hand tracking, hybrid state control 
logic (Section 4.3) v.s. feature-based classifcation). Moreover, from 
the scope of authentication model, existing vision-based methods 
[39, 54] aim to authenticate, meaning to fgure out the right user in 
a closed set, thus are user-dependent. For example, the performance 
of attribute-based method [54] will drop as the user set enlarges 
while the attribute space remains the same. In comparison, Pan-
oTrack aim to track the user after a strong authentication. The 
tracking phase works regardless of user-related features, thus is 
user-independent. From this point, PanoTrack is less afected by 
the size of the user set, thus more realistic in deployment. 



Auth+Track CHI ’21, May 8–13, 2021, Yokohama, Japan 

Scenes In the Lab/Ofce In the Street In the Cafe Overall 

Id Status Task Description S F W Pre Rec S F W Pre Rec S F W Pre Rec Pre Rec 
1 T Putting aside 42 0 0 1.000 1.000 39 3 0 1.000 0.929 42 0 0 1.000 1.000 1.000 0.976 
2 T Walking around 41 0 1 0.976 1.000 40 2 0 1.000 0.952 40 2 0 1.000 0.952 0.992 0.968 
3 H Using the phone 42 0 0 1.000 1.000 41 1 0 1.000 0.976 41 1 0 1.000 0.976 1.000 0.984 
4 H Gripping while sitting / standing 41 0 1 0.976 1.000 36 6 0 1.000 0.857 41 1 0 1.000 0.976 0.992 0.944 
5 H Gripping while walking 36 5 1 0.973 0.878 34 8 0 1.000 0.810 38 4 0 1.000 0.905 0.991 0.864 
6 T / H Out of Camera Sight 0 40 2 0.952 - 0 42 0 1.000 - 0 42 0 1.000 - 0.984 -
7 T Leaving away (≈ 4m) and back 35 3 4 0.897 0.921 34 8 0 1.000 0.810 32 9 1 0.970 0.780 0.953 0.835 

1-2 T On-table tasks 83 0 1 0.988 1.000 79 5 0 1.000 0.940 82 2 0 1.000 0.976 0.996 0.972 
3-5 H In-hand tasks 119 5 2 0.983 0.960 111 15 0 1.000 0.881 120 6 0 1.000 0.952 0.994 0.931 
1-5 T&H Around-the-device tasks 202 5 3 0.985 0.976 190 20 0 1.000 0.905 202 8 0 1.000 0.962 0.995 0.947 

Table 4: Diferent scenes and their tracking results. Status means the phone’s status in a specifc scene (T: On a Table-like 
Object, H: In Hand). S, F, W stand for tracking succeeded count, tracking failed count, and wrong tracking count respectively. 
The precision and recall are summarized in Pre and Rec. 

Method Behavior Range Sensor Dataset Precision Recall F-1 Score Accuracy 

DeepAuth [1] 
SecurePickUp [35] 
Zhang et al. [63] 

Attribute-based(UMDAA-01) [54] 
UMDAA-02 Face [39] 

Daily phone usage 
Picking up the phone 

Stroking on the touchscreen 
Facing the phone 
Facing the phone 

On-body 
On-body 
On-screen 

Around-the-device (≤ 50cm) 
Around-the-device (≤ 50cm) 

Acc + Gyro 
Acc + Gyro 
Screen + Ori 
Camera 
Camera 

47 users 
24 users 
138 users 
50 users 
48 users 

99.2% 
-
-
-
-

92.7% 
-
-
-
-

95.8% 
-
-
-

82.83% 

-
96.3% 
95.0% 
70.0% 
76.15% 

PanoTrack Free movement Around-the-device (≤ 2m) Camera 14 users 99.5% 94.7% 97.0% 94.3% 

Table 5: An comparison of PanoTrack and representative implicit authentication methods. 

Although such a comparison was not well-established because 
of the diferences on sensing modalities and datasets, PanoTrack 
achieved better or comparative results with existing methods. This 
validates the efectiveness of our authentication models and our 
algorithm. 

9 STUDY 3: USABILITY EVALUATION 
We further evaluated the usability of PanoTrack through a third user 
study, focusing on the efciency improvement and user experience. 

9.1 Design 
The study contained two parts. In the frst part, we used a within-
subject design to compare the authentication efciency of Auth+Track 
(PanoTrack with the mixed strategy) and that of the traditional face 
authentication method. The independent variable was whether the 
PanoTrack was turned on (the on vs. of session). And the depen-
dent variable was the phone access time, i.e., from the moment a 
user grips the phone to the moment they access the phone con-
tent. In each session, participants were randomly assigned a task 
sequence to simulate a real-life usage experience. There were two 
types of tasks: 1) phone-usage tasks, including checking the mes-
sage, opening a browser, making a call, and playing music, and 2) 
non-phone-usage tasks, including typing on a laptop, stretching 
themselves, talking with someone nearby (the experimenter), and 
walking around. The task sequence consisted of these two types 
alternatively. Each time a task was randomly sampled from the 
corresponding task set. Participants were asked to perform these 
tasks until the time of this session reached 10 minutes. The order 
of the two sessions was counterbalanced. We designed a question-
naire to evaluate each session, which contained questions of NASA 
TLX [24] and one additional question about their willingness to use 
in daily life. 

In the second part, we conducted a semi-structured interview 
with each participant to compare Auth+Track (mixed strategy) 
with SmartLock. After participants experienced Auth+Track in 
the frst part, we further introduced and presented the SmartLock 
technique, including all three authentication methods: on-body 
detection, trusted places, trusted devices. We asked participants to 
try these three methods and ensured that they fully understood 
how it worked. Then, our interview started with "How do you think 
about the Auth+Track/SmartLock?" and "Which one do you prefer? 
Can you elaborate on the reasons?". The experimenter followed up 
with deeper questions according to participants’ responses. 

9.2 Participants and Apparatus 
We invited the same participants in Study 1 for usability evaluation. 
The apparatus were the same as Study 1, with SmartLock [20] in-
stalled on the phone. In this study, we set the screen locking time as 
15 seconds, and face authentication as the default method. Although 
all participants were familiar with the standard face authentication, 
none of them had previous experience with SmartLock. 

9.3 Procedure 
Participants went through a brief introduction and then signed the 
consent form. In the frst part, participants started with one session 
(either on or of session), during which their phone access time was 
recorded. The frst session was followed by a short break. Then, 
participants completed the other session. Each session lasted for 
10 minutes. In the second part, After the experimenter ensured 
that participants understood both Auth+Track and SmartLock, the 
semi-structured interview was conducted. Finally, participants were 
thanked and dismissed. The whole study took about 25 minutes 
and participants received $15 for compensation. 
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Figure 7: Subjective Ratings of the frst part of Study 3. Lower 
Mental/Physical/Temporal Demand and Frustration scores, 
and higher Performance and Willing to user scores means 
better user experience. 

9.4 Result 
9.4.1 Eficiency. During the on session, only 1 participant (P8) lost 
tracking one time due to cloth obstruction. The Other 9 partic-
ipants authenticated once and fnished all the tasks with quick 
access, and still were robustly tracked by PanoTrack till the end 
of the session. The average phone access time in the on session 
(with PanoTrack enabled) was 1.45 seconds (SD=0.47). In contrast, 
the average access time in the of session was 2.98 seconds be-
cause of the repeated authentication (SD=0.69). A paired samples 
t-test showed that PanoTrack was signifcantly faster than the tra-
ditional face authentication method (p < 0.001). Although the task 
sequence was an accelerated simulation of daily smartphone usage, 
the results demonstrate how PanoTrack helps users eliminate "gap" 
authentications and improves their phone access speed. 

9.4.2 Usability. The questionnaire results of the experiment present 
positive feedback from users (see Figure 7). We ran a Wilcoxon 
signed-rank test for each question. For Auth+Track, users rated 
signifcantly lower temporal demand (2.1 vs. 4.7, p < 0.05), higher 
performance (6.0 vs. 3.1, p < 0.01), and higher willing to use (6.2 
vs. 4.4, p < 0.05). Other results did not show signifcance between 
the two methods in terms of mental load (p = 0.59), physical load 
(p = 0.21), efort (p = 0.07), or frustration (p = 0.12). The results 
show that participants acknowledged the advantage of accelerating 
the authentication process introduced by Auth+Track. 

9.4.3 Interview: Auth+Track vs. SmartLock. 8 participants preferred 
Auth+Track and 2 participants did not have a preference. We sum-
marized the interview results from the aspects of mental load and 
reliability. 1) Mental load. Participants found SmartLock hard to 
understand, especially the concept of the trusted location. They 
were confused how the trusted regions are determined and why 
this could be secure. Moreover, participants said thinking whether 
a situation was covered by a trusted device/place was demanding. 
This was also supported by [44]. "It’s a bother to think whether it’s 

a trusted place when you reach a new place." (P4). Comparatively, 
the functionality and the principal of Auth+Track were straight-
forward easy for participants to understand and it did not require 
any prerequisites or prior knowledge. 2) Reliability. Participants 
did not think third-party information required SmartLock (trusted 
devices) was reliable. The lack of feedback on the on-body detection 
also worried participants about its reliability. In contrast, partic-
ipants found the user-centered criterion reliable. The interview 
results showed that participants accepted Auth+Track as a secure 
authentication model that is more trustworthy than SmartLock. 

10 DISCUSSION AND LIMITATIONS 
In this section, we discuss potential solutions and issues related 
to the practical adoption and deployment of Auth+Track and Pan-
oTrack. 

10.1 Possible Solutions to Reduce Mistracking 
There are few potential solutions for us to further improve the per-
formance of PanoTrack that worh exploring in the fture. First, since 
PanoTrack cannot distinguish whether it is tracking the wrong user, 
keeping a low mistracking rate is essential for the system. In the 
user identity assignment evaluation session, mis-tracking happened 
once (0.5%) because two people were evenly close to and facing the 
phone. This was hard to be distinguished using a position-based 
algorithm. However, it could be easily solved by integrating the 
location of the authenticated face detected by existing face authen-
tication methods. In our current implementation of PanoTrack, we 
could not access the phone’s Face ID system detection results due 
to the hardware limitation. But we envision this problem could be 
resolved as these embedded system are becoming more and more 
accessible. Second, in study 1, we discovered mistrackings were 
mainly caused by 1) body obstruction from other disturbers, 2) the 
wrong detection in body keypoints, and 3) low image resolution 
in far (> 2m) distance. A conservative strategy to decrease the 
mistracking rate in the tracking phase is to restrict the tracking 
condition to a smaller tracking range (e.g., 2m) or to a stricter cri-
terion dealing with overlapping and obstruction – When a user 
leaves further than 2m, is obstructed by a disturber, or overlaps 
with other person in the scene, PanoTrack transits to a "tracking 
lost" state. If so, the system would yield almost no mistrakcing. 

10.2 Form Factor and Energy Consumption 
Currently, our implementation is based on an external dual-mode 
fsheye camera and the whole pipeline runs on a PC server. Our pro-
totype shows the feasibility of Auth+Track, but it is still limited by 
the hardware size, implementation redundancy, and computational 
complexity for real-life deployment. 

With the development of a low-powered always-on camera on 
the mobile device (e.g., HUAWEI Mate 30) and mobile processor 
(e.g., Apple A14 has a NN process unit to accelerate computation), 
continuous user sensing is becoming a future trend. The implemen-
tation of PoseNet using Tensorfow Lite [17], running 60 FPS on 
mobile devices, also demonstrates the feasibility of user sensing 
in mobile scenarios. Moreover, various compression techniques 
in neural networks (e.g., using 8-bit [16] or 16-bit foats [14] in 
parameter quantization) could further improve the performance 
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and reduce the energy consumption of existing neural inference 
models for user tracking. 

10.3 Privacy Issue 
The always-on camera on a smartphone brings about privacy con-
cerns in the following two aspects: 1) privacy of the user and 2) the 
privacy of other people in the scene. PanoTrack camera directly 
faces the user’s body and the surrounding area, leading to the risk 
of privacy leak of both the user and surrounding people. There are 
a few potential solutions. 

For 1), As smartphones are getting more and more powerful, an 
efective approach to alleviate this problem is edge computing [57], 
i.e., moving the computation from the server to the local phone. 
Using such a method, the body tracking, hand tracing, and user 
identity assignment will all take place locally and no data will leave 
the phone, thus protecting privacy. 

For both 1) and 2), the data collecting and image processing 
procedure should be implemented at a high-privacy level (e.g., at 
the OS level) or in a customized hardware (e.g., FPGA [3]), so that 
the always-on camera module outputs semantic information (e.g., 
keypoints, classifcations, heatmap) instead of raw images. (Even 
the user cannot access the raw data.) 

We plan to combine these method to minimize the privacy con-
cerns from users. However, its efect on the tracking performance 
and accuracy (due to the limited computing power) needs to be 
investigated in the future. 

10.4 System Robustness 
Although computer vision algorithms and models show great po-
tential in detecting semantic information in images, they are not 
100% reliable yet. Factors including motion blur, improper illumi-
nation, interferential scene, and adversarial pattern may lead to 
detection failure. The robustness of a detection system should be 
taken into prime consideration before the system is put in practical 
use. One limitation is that the experiments were conducted in an 
indoor environment. The performance of PanoTrack algorithms in 
a more complex environment or against adversarial attacks should 
be further explored. 

To enhance the system robustness and alleviate the bad conse-
quences of detection failure, one solution is to enhance hardware’s 
sensing ability (e.g., using an anti-shake, high-resolution camera) 
or to enhance model robustness (e.g., training parameters with ad-
versarial noises). Another solution is to sacrifce the algorithm’s 
recall to improve precision. Since there is always a trade-of among 
multiple factors (hardware investment, computational cost, system 
precision, etc.), fnding a Pareto Optimality for practical use is of 
great importance. 

11 CONCLUSION 
In this paper, we propose Auth+Track, a novel authentication model 
that eliminates the "gap" authentication between fragmented smart-
phone sessions. Auth+Track enables "Authentication Free when 
User is Around" by sparse authentication and continuous tracking 
of the user’s status. We then present PanoTrack, an instantiation of 
Auth+Track based on a fsheye camera installed on the top of the 
phone to capture the panoramic scene, including the user’s body 

and hand. We develop an algorithm pipeline to extract all the key 
features of the body and the hand for user tracking. The results of 
our frst user study show the good performance of PanoTrack, espe-
cially under the around-device scenarios (<2m). Both body tracking 
and hand statu tracing achieved an accuracy over 99%. In real-life 
scenarios, PanoTrack achieved an precision of 99.5% and an recall 
of 94.7%. We compared the PanoTrack against the traditional face 
authentication method in our second user study. The results of the 
time measure validated that PanoTrack signifcantly accelerated the 
authentication process. Participants also provided positive feedback 
on PanoTrack. Users accepted "User Around" as a reliable criterion. 
They believed Auth+Track as a secure authentication model that is 
trustworthy. We envision Auth+Track has the potential to inspire 
more authentication-free techniques that lead to human-centered 
authentication experience. 
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