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ABSTRACT
We propose Auth+Track, a novel authentication model that aims
to reduce redundant authentication in everyday smartphone usage.
By sparse authentication and continuous tracking of the user’s
status, Auth+Track eliminates the "gap" authentication between
fragmented sessions and enables "Authentication Free when User
is Around". To instantiate the Auth+Track model, we present Pan-
oTrack, a prototype that integrates body and near field hand in-
formation for user tracking. We install a fisheye camera on the
top of the phone to achieve a panoramic vision that can capture
both user’s body and on-screen hands. Based on the captured video
stream, we develop an algorithm to extract 1) features for user
tracking, including body keypoints and their temporal and spatial
association, near field hand status, and 2) features for user identity
assignment. The results of our user studies validate the feasibility
of PanoTrack and demonstrate that Auth+Track not only improves
the authentication efficiency but also enhances user experiences
with better usability.

CCS CONCEPTS
• Security andprivacy→ Security services; •Human-centered
computing → Ubiquitous and mobile computing theory, concepts
and paradigms.
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Figure 1: (a) A user is authenticating and the Auth+Track
system begins keeping track of the authenticated user. (b)
The Auth+Track system continuously tracks the authenti-
cated user in multiple scenes: The user is working while the
phone is placed on table; the user is using the phone; the user
is gripping the phone and walking. When the user leaves
the sensing range of the Auth+Track system, the phone au-
tomatically locks.

1 INTRODUCTION
Nowadays, smartphone authentication is indispensable to protect
smartphone users’ data privacy. However, authentication itself is a
tedious and time-consuming process for smartphone users. Numeri-
cal and textual password authentication, the original and most com-
monly adopted authentication form, requires tedious operations
and high input delay [21], thus not optimal for mobile usage [58].
Although the procedure in biometric authentication techniques is
simplified, users are tired of repeating the authentication again and
again [15, 60]. A recent study [23] shows that people spend 2.6
minutes per day in authentication, and authentication procedures
are unnecessary for smartphone users in 24.1% cases while [21]
demonstrates that people perform 70.3 sessions (39.9 unlocks) per
day, taking up 9% of time they use their smartphone. The evidence
above reveals that current authentication procedures are not as
intelligent as expected. The unnecessary process is perceptible to
the user and may annoy the user.

Many solutions have been proposed to reduce the unlocking
burden. For example, Google released SmartLock [20] that lever-
ages activity recognition, trusted locations, and trusted devices,
to achieve smart authentication, e.g., keeping the phone unlocked
when there is a trusted smartwatch nearby. But this method re-
quires additional wearable devices. Moreover, a recent study by
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Koushki et al. [44] shows that the misconceptions and difficulty in
learning the semantics of multi-modal and context-based unlocking
impeded SmartLock techniques from being widely adopted.

An alternative is an implicit authentication, also known as con-
tinuous authentication [50]. In previous literature, various implicit
authentication methods based on user’s behavioral features (e.g.,
arm movement [35], gait [48], and keystroke actions [42]) have
been proposed to reduce the burden of intentional authentication.
For example, when someone picks up the phone, their "picking up"
behavior is captured by built-in motion sensors and processed by a
recognition algorithm. If the movement doesn’t match the control
pattern of the authenticated user, the authentication system will
block them from accessing the phone [35]. However, the shortcom-
ing of these methods is that the authentication accuracy is not high
enough for practical usage in daily life [35, 42].

More importantly, most previous work treats each authentica-
tion procedure independently, i.e., the current authentication result,
either explicit (e.g., entering a password) or implicit (e.g., inferring
from arm movement), are not related to the past results [50]. How-
ever, when a user interacts with a phone, the usage procedure is
continuous and temporally related. There are many cases where
repeated authentication is unnecessary and cumbersome when tak-
ing historical information into account. For instance, when working
on their laptops/PCs, users commonly put their phones besides but
need to check incoming notifications frequently. In such a scenario,
both explicit and implicit techniques require repeated authenti-
cation, which is annoying because the phone should have been
staying unlocked when sitting beside users.

To address this problem, we propose Auth+Track, a novel au-
thentication model that goes beyond the existing implicit authen-
tication model, and enables "Authentication Free when User is
Around" by introducing a continuous user tracking phase to op-
timize the authentication procedure. Instead of repeating authen-
tication in every session, a user only needs to authenticate once
when starting to use their smartphone. The smartphone remains
unlocked when the authenticated user is around, as the Auth+Track
system automatically keeps track of the user’s body movement and
accumulate historical tracking records to maintain secure authenti-
cation. Once the user leave the scene, or some malign users want
to attack the phone (e.g., taking away the device), Auth+Track will
lock the phone immediately.

To instantiate Auth+Track authentication model, we present
PanoTrack, a prototype of Auth+Track based on panoramic scene
sensing. In PanoTrack, the status of the body and near field hand is
leveraged to control Auth+Track internal state transition logic. We
install a fisheye camera on the top of a smartphone (see Figure 4) to
achieve a panoramic vision of the surrounding scene, covering users’
bodies and on-screen hands. Based on the prototype, we develop an
algorithm for authentication. The algorithm first calculates near-
field hand status, body keypoints, and the spatial and temporal
relation of these keypoints at each frame. Then, it employs the
floodfill algorithm to detect the connectivity between the phone
and the body. Such a pipeline ensures the tracking robustness when
there are multiple persons in the scene.

We conducted two user studies to evaluate the tracking accuracy
and the usability of our system. The results show that PanoTrack
achieves satisfactory authentication accuracy in real-life scenes.

Moreover, users provided positive feedback and rated significantly
higher scores of subjective efficiency, performance, and, willing to
use. With emerging modern smartphones equipped with power-
efficient hardwares1, realtime, continuous user sensing and tracking
on a smartphone is becoming feasible. We envision that Auth+Track
can be easily adopted by smartphones in the near future.

Our main contributions are summarized as follows:
1) We propose Auth+Track, a novel authentication model that

reduces redundant authentication by continuous user tracking, in
order to reduce authentication effort.

2) We present PanoTrack, an instantiation of Auth+Track. With
a fisheye camera mounted on a smartphone’s top-front, we develop
an algorithm to continuously track the user’s body movement and
the relationship between the phone and the user. Our performance
evaluation study demonstrates the good tracking accuracy of Pan-
oTrack.

3) We conduct a second user study to evaluate the usability
of PanoTrack in simulated real-life scenarios. Our results show
that PanoTrack significantly accelerates the authentication process.
Moreover, users provide positive comments on the Auth+Track
authentication model.

2 RELATEDWORK
We first summarize the existing authentication methods and models
on smartphones. We then review vision-based sensing and interac-
tion techniques.

2.1 Smartphone Authentication
Depending on a user’s awareness of being authenticated, current
authentication methods can be categorized into explicit methods
and implicit methods. Supported by these methods, many novel
authentication models have been proposed.

2.1.1 Explicit Authentication. Explicit authentication, the origi-
nal form of authentication, includes password methods (e.g., PINs
[46, 59] and graphical patterns [59]) and biometric methods (e.g.,
fingerprint [25], face [2], and iris [34, 43, 55]). Password authenti-
cation methods have become standard on mobile phones. Intuitive
numbers or graphical series that people can easily memorize, such
as important dates, names, symmetric patterns, are frequently used
as passwords. However, such prior information reduces the search
space, making password authentication easy to break [13]. In addi-
tion to its vulnerability, these methods also ask for user’s explicit
participation, which is tedious and time-consuming [13]. Biomet-
ric authentication methods identify the user based on biometric
features, such as fingerprint, face, iris, and voice. Compared with
password methods, these methods are more complicated and harder
to break. Besides, biometric methods are more efficient, since the
user doesn’t need to enter a long password sequence or draw a
complex pattern. However, the user’s awareness of participation
still exists, for example, when putting fingers on the fingerprint
recognition module, or intentionally facing to the front camera.
These acts can bother some smartphone users.

In our work, Auth+Track reduces users’ burden by obviating
redundant authentication.
1For instance, HUAWEI Mate 30, released on September 26th, 2019, has an always-on
camera that enables in-air gesture interaction
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2.1.2 Implicit Authentication. Implicit authentication, also known
as continuous authentication, is a novel concept proposed in recent
years and aims to eliminate user’s awareness of the tedious au-
thentication procedure [50]. Implicit human behavior features like
picking up the phone [35], gait [32, 48], stroke [63], face [39, 54],
body posture [47], and voice identification [42] are considered when
authenticating a user’s identity. Mauro et al. [13] proposed the idea
of transparent authentication and modeled people’s behavioral fea-
ture when answering or placing a call with an accelerator and
orientation sensor. Secure Pick Up [35] analyzed the user’s arm
movement feature when picking up the phone with a smartphone
built-in accelerator and gyroscope. DeepAuth [1] illustrated how
to do implicit re-authentication in mobile apps based on built-in
accelerator and gyroscope data. Papavasileiou et al. [48] developed
transparent re-authentication techniques based on gait feature. We
point users to a few comprehensive reviews of existing continu-
ous authentication techniques [19, 40, 50, 51]. In these transparent
authentication techniques, smartphones serve as a proactive "ob-
server" to monitor a user’s behavior and model a user’s identity
based on implicit behavioral information [51]. However, the major
drawback that blocks these methods from commercialization is
that these implicit methods are not as reliable as explicit authenti-
cation methods like password and fingerprint authentication. As
we will show in the paper, our method achieved a more robust re-
sults compared to the state-of-the-art methods. Moreover, existing
implicit techniques do not leverage historical authentication re-
sults effectively, thus still introducing cumbersome authentication
process.

2.1.3 Exploration of Novel Authentication Model. Previous work
has discussed the balance between usability and security concern
[21–23, 30, 41, 52, 60]. Consequently, many authentication models
are proposed to optimize traditional authentication processes [5, 26,
27, 53]. CASA [26] introduces an adaptive probability framework
to choose appropriate authentication methods based on context
dynamically. Progressive authentication [53] divided smartphone
usage into 3 security levels (public, private, and confidential) and
designed adaptive strategies for each level. SnapApp [5] develops a
novel authentication concept by providing a time-constrained quick-
access option that bypasses "full access" authentication, which can
reduce the authentication workload. All of the work focuses on
redesigning authentication processes or the access control logic
based on the existing authentication information. But most of them
lack additional biometric or behavioral information that helps the
system understand a user’s behavior to make more intelligent deci-
sions. Although progressive authentication [53] utilizes the sensors
to capture certain behavior (accelerometers, light sensors, micro-
phones, and screens), its ability is limited in some common scenes,
such as when the smartphone is put on the table (staying still).

In contrast, Auth+Track proposes to continuously track the au-
thenticated user while they are around, which introduces a new
"User Around" state in the authentication model. Our prototype
PanoTrack can work in a wider range of scenarios.

2.2 Vision based Sensing and Interaction
Vision-based sensing and its corresponding interaction techniques
are popular topics in HCI due to an image’s compact expression

of panoramic scenes. In previous work, different sensing and in-
teraction techniques enabled by different hardware support are
widely explored. Different hardware settings, like a RGB camera, a
depth camera [9], a RGB camera + prism [62] and a fisheye camera
[7, 8, 61], result in different sensing ranges and ability, and thus can
capture different semantic information. Sensing information can
be categorized into: 1) body-related information [8], such as head,
limbs [8], and hand status [7, 62]; 2) object-related information [7];
and 3) the peripheral scene [8].

Based on the extracted semantic features of both the user’s body
and environment, various active and passive interaction techniques
have been developed. Active interaction techniques often integrate
sensing information as a new input modality, e.g., finger tracking
for on-air cursor control [61, 62], object recognition for body-object
interactions [61], and body-and-hand recognition for gesture-based
interaction [7, 8]. What interests us is the interaction techniques
enabled by these features for passive use. Previous work has tried
to incorporate the human body and hand features as contextual in-
formation to build intelligent interaction applications. For example,
hand gripping status has been used for dynamic layout [11, 37], au-
tomatic interface orientation switching [10], and adaptive keyboard
decoding [18], while body status and movement have been used for
location-based messaging, adaptive interfaces, and followable wid-
gets [61]. Our work is inspired by all these passive sensing designs
and is the first to utilize panoramic scene sensing information in
authentication state control.

3 AUTH+TRACK
We first illustrate the detailed concept of "Authentication Free when
User is Around", a novel sensing goal that leads to a more intelligent
authentication process. We then formally introduce Auth+Track,
a novel authentication model that combines authentication and
continuous user tracking, aiming to achieve the goal. Finally, we
show how the internal state of Auth+Track transits through a state
transition graph.

3.1 Authentication Free when User is Around
Explicit authentication is a tedious and time-consuming process.
To illustrate how redundant current smartphone authentication is,
we first discuss two common scenes.

Scenario 1: Static Scenario. Alice is working in the office, sit-
ting at her desk, and her smartphone rests beside on the desk. Every
time she wants to access her phone, she picks up the phone and
deliberately faces the phone to authenticate. She texts a short mes-
sage and places the phone back on the desk – the phone locks in
a minute. The next time she want to access the phone, she need
to authenticate again. In this case, repeated authentication is un-
necessary because the phone remains around the user and under
control.

Scenario 2: Mobile Scenario. Bob is engaged in a multi-round,
real-time messaging exchange with his friend while holding the
phone in his hand. Every time he sends a message, he waits for
the friend’s reply. If he waits for more than a minute, the phone
locks. He then needs to authenticate again to read new messages
and reply. This is bothersome and inefficient because the phone
remains on the hand.
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In both cases, redundant authentication happens due to the lack
of awareness of the user's status. In traditional lock-unlock proce-
dures on smartphones, the phone remains unlocked when it detects
touches [20] or the behavior pro�le that belongs to the owner [50].
However, this criterion is not perfect. Sometimes, a user would like
to keep the phone unlocked when the phone is under their control
but is not necessarily being used for now.

Therefore, introducing a "user around" state as an active signal
could make traditional lock-unlock processes more smooth and
natural. When a user is in a "user around" state, they are su�ciently
aware of the smartphone [33]. Therefore, putting the user into
an "authentication free" status, where the phone keeps unlocked,
can help reduce the redundancy of authentication. Based on these
conjectures, we de�ne our authentication goal as "Authentication
Free when User is Around", which guides the exploration of more
intelligent lock-unlock procedures.

"User around", meaning user being around and in charge of the
device, can be de�ned based on the smartphone's positional relation
with the user. Generally, user-phone relation falls into one of the
following scenarios: in-use scenario, put-aside scenario, gripping
scenario, pocket scenario, and leaving-away scenario.

"In use" means the user is directly sending instructions to (e.g.,
touching the screen, clicking a physical button) or receiving in-
formation from (e.g., listening to a phone call) the phone. When
the user has no intention to interact, while still in charge of the
phone, his positional relation with the phone falls into one of the
three states: 1) Putting aside. The user puts the phone on a static
object around him (within certain distance, e.g., 2m). 2) Gripping.
The user is gripping the phone on his hand (while not using it).
3) Pocket. The user put the phone into a carry-on container (e.g.,
his pocket or bag). "Away" means the user leaves away from the
phone for certain distance (e.g., 4m) or is separated with the phone
by physical barriers (e.g., a wall), no longer in charge of the phone.

We brie�y summarize the status and the possible sensing ap-
proaches of each scenario in Table 1. A "user around" state covers
put-aside, gripping, and pocket scenarios. We are interested how
a user in a "user around" state can be sensed. For "put aside" and
"gripping", pixel-wise information captured by phone camera indi-
cating a user's identity, including the face, hands, and body, can be
sensed and tracked, while for "pocket", visual evidence is limited
to illumination. For "gripping" and "pocket", speci�c patterns (e.g.,
gait [1] and a picking-up gesture [35]) from motion data can be
used to infer the identity of the user.

Reducing Redundant Authentications by Continuous User Track-
ing Smartphone usage sessions are fragmented, resulting in numer-
ous "gap authentications". To alleviate unnecessary repetitions, an
intuitive approach is to bond the fragmented sessions into a single
continuous and coherent session [50]. However, previous work
does not cover the "user around" state, which can be leveraged to
augment the authentication model. Such a "user around" state can
be determined by continuously tracking a user's body movement
and hand behavior. Note that before enabling continuous tracking,
a "gateway" authentication should be performed to verify the user's
identity.

We propose a new model that combines the "gateway" authen-
tication phase and the continuous body tracking phase, called
Auth+Track . A user only needs to authenticate once when starting

Scenario Status Possible Sensing Approaches

In Use User on Camera, motion sensor, and touchscreen
Put Aside User around Camera
Gripping User around Camera, motion sensor
Pocket User around Illumination sensor, motion sensor
Away User o� �

Table 1: Di�erent scenarios of smartphone usages.

to use the smartphone. Then, the phone automatically keeps track
of the user's body movement. As long as the user is successfully
tracked, the smartphone remains unlocked. We discuss the two
phases in detail below.

3.1.1 Authentication: A Secure "Gateway".In Auth+Track, the au-
thentication phase serves as a secure gateway to access the phone.
Di�erent feed-forward authentication methods, such as password,
�ngerprint, iris, or face, can be used in this phase. A user's be-
havioral features vary when they use di�erent feed-forward meth-
ods. When using the iris or face, the user's face can be captured.
When using a �ngerprint or password, the connectivity between
the user's body, hand, and phone can be detected. These features
serve as the key prerequisite information for the next tracking
phase. Auth+Track system �rst assigns the veri�ed identity to the
user and then leverages these features (depending on which method
is adopted) to continuously track the user. Accurate user identity
assignment is essential because it helps to determine which person
is the authenticated user when there are multiple persons in the
scene.

3.1.2 Tracking: Continuous Track of User's Behavior.Robust user
tracking is crucial to achieving the goal of "Authentication Free
when User is Around". After assigning the user's identity, Auth+Track
runs a continuous tracking procedure to keep track of the authenti-
cated user's status, which includes the system's tracking informa-
tion, the range, and the user condition.

These variables change under di�erent sensor solutions. Possible
sensor options include capacitive sensors [29], on-device motion
sensors [45, 49], on-screen cameras (modality: RGB [61], IR sensors
[56], depth sensors [9]; range sensors [62], �sheye cameras [7]),
and third-person perspective cameras [12]. Each sensor has its pros
and cons. While capacitive sensors and built-in motion sensors are
convenient and computationally friendly, they can't sense pixel-
wise information or distant behavior. The on-screen camera can
capture pixel-wise information, but the sensing range is limited by
hardware constraints and the surrounding environment.

We categorize "tracking" into four types according to the range:
1) on-device tracking (i.e., tracking occurring while in contact with
the device); 2) near �eld tracking (<10cm); 3) around-device track-
ing (0-2m); and 4) full-scene tracking. Although a motion sensor
and a capacitive sensor and achieve the �rst two tracking types
respectively, the ranges are too small to be practical. A third per-
spective camera can capture the full scene, but it is not suitable
in mobile cases and has privacy issues. Therefore, we adopt the
around-device tracking for continuous user tracking.

3.1.3 Threat Model.When either of the user assignment or user
tracking fails, a conservative strategy would be to deactivate Auth+
Track, resulting in a normal smartphone usage session without
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Auth+Track. An attacker can attempt to cheat the system by de-
liberately inducing a misassignment or mistracking of the system.
Therefore, for any implementation of Auth+Track, robustness in
complex environments and the face of deliberate attacks is essential
for a successful tracking phase.

3.2 Auth+Track State Transition Graph
In a traditional authentication procedure (Figure 2a), only three
states ("User On," "Idle," and "Locked") are recognized. In contrast,
Auth+Track separates the "Idle" state into two states � "User Around"
and "User O�" � to better represent the full status of users. In
Auth+Track, the state of "User Around" is introduced to distinguish
a user's status as being around-device or being absent. The state
transition graph illustrates the overall work�ow of Auth+Track, as
shown in Figure 2b. Compared with the traditional authentication
model where only touch or "operation" can be recognized for "User
On" state, Auth+Track takes advantage of the perception of the sur-
rounding environment and the user's behavior, leading to a more
precise representation of a user's status.

4 PANOTRACK: AN INSTANTIATION OF
AUTH+TRACK

In this section, we presentPanoTrack, a prototypical instantia-
tion of the Auth+Track authentication model. In PanoTrack, two
categories of information � body movement and near-�eld hand
status � are tracked by an on-device camera, since they are the
most informative and identi�able for indicating a users' position
and behavior.

PanoTrack provides a strong sensing capability to capture both
the user's body movement and the near-�eld hand status. After
extracting these key features, we design the detailed control logic,
i.e., how the PanoTrack system integrates these features to control

a phone's state transition logic. Based on how the detected features
are used to form the state transition logic of PanoTrack, we propose
three strategies: hand-only strategy, body-only strategy, and mixed
strategy.

4.1 Hand-Only Strategy
The most straightforward feature to indicate whether the user is
in charge of the phone is to detect whether they are gripping,
grasping, or touching the phone, which can be captured by the
PanoTrack system. An intuitive strategy is that if a "hand-on" signal
(gripping, grasping, and touching) is detected, the phone will not
automatically lock. However, the main drawback of only using hand
information is ambiguity. If there is a release between two "hand-
on" signals, we cannot judge whether the two "hand-on" signals
are generated by the same user (i.e., the authenticated one). For
security reasons, in our design of a hand-only strategy, if there is a
release between two "hand-on" signals, the latter one is deactivated.
In the PanoTrack hand-only strategy, after authentication, the hand
status is continuously tracked. Once the user releases the phone,
the tracking is lost. Though this strategy is conservative, it can
cover most mobile cases,e.g., using the phone on the road.

4.2 Body-Only Strategy
Compared with near-�eld hand status, a user's body movement
detected by the PanoTrack system is a more comprehensive and
reliable feature that indicates whether the user is around. The Pan-
oTrack body-only strategy is designed based on a user's body fea-
tures, including the body keypoints and their spatial and temporal
relationship. After authentication, the PanoTrack system �rst as-
signs an identity to the authenticated user, and then continuously
tracks the user. When the assignment �nishes, the global state of
the phone turns from "unauthenticated" to "authenticated". If the

(a) Existing auth model's state transition graph (b) The Auth+Track model's state transition graph

Figure 2: Authentication Model Comparison. (b) Auth+Track splits the "Idle" state in (a) traditional authentication model into
two states � "User Around" and "User O�" � to distinguish a user's status as being around-device or being absent.
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Figure 3: State Transition of PanoTrack Mixed Strategy. Af-
ter authentication, based on the tracking information, the
user falls into one of the three states: body-only, body+hand,
and hand-only. The tracking state switches organically
based on the relative status between the user and the phone.

tracking succeeds, the global state remains "authenticated". Once
the tracking fails (e.g., the user leaves), the global state changes to
a "lost" state. When the phone is in a "lost" state, the standard lock
procedure initiates,i.e., idling for several seconds, and then locking.
Typically, o�ce scenes where smartphone sits still on a desk �t
well with this strategy.

4.3 Mixed Strategy
Though the two strategies mentioned above perform well in speci�c
scenes, they have relatively low detection rates in general cases.
For example, body tracking in mobile cases quickly fails because of
the motion blurring or the absence of a body when a user holds the
phone. Similarly, near-�eld hand status information cannot cope
with cases when a hand is absent. To overcome the shortcomings
above, we propose a mixed strategy that makes full use of both hand
and body features. The key idea to merge a body-only strategy and a
hand-only strategy is to reinforce the vitality of one strategy based
on the other - making the tracking procedure harder to deactivate.
The reinforcement strategy can be divided into "hand-to-body"
phase and "body-to-hand" phase.

A "hand-to-body" phase focuses on tracking the scene when a
body is absent from the camera's �eld of view,e.g., a user is gripping
the phone and walking. When an activated "hand-on" signal is
detected, even if a user's body is untracked or lost, the tracking can
be recovered. The authenticated identity is reassigned when the
camera system detects the following: 1) a stable center-oriented face
close enough to the camera; and 2) connectivity between a user's
on-screen hand and the user's body. The reassignment of tracking
is reliable and secure in identifying the authenticated user because
a "hand-on" signal is tethered to the identity of the hand. And
the hand-body connectivity assignment and a center-oriented face
assignment assures the relation between the hand in the camera's
�eld of view and the captured body.

"Body-to-hand" phase aims to deal with the situation when there
is no hand in a camera's �eld of view. In the hand-only strategy, if

Figure 4: Left: Our hardware prototype. The sensing range
is 140� (vertical) � 360� (rotational). Right: Captured image
(640� 480) can be divided into 2 regions: near �eld region
(red) for hand gesture recognition and major region (blue)
for user tracking.

there is a release between two "hand-on" signals, the latter is deacti-
vated, which is not long-lasting. In the "body-to-hand" phase, body
identity helps to activate a deactivated "hand-on" signal even if it ap-
pears after release. Speci�cally, when the authenticated user's body
is successfully tracked, and then a "hand-on" signal emerges, the
connectivity between the smartphone, hand, and body is activated.
For example, when an authenticated user grasps his/her phone from
the desk, if connectivity is detected, the system status proceeds
into "hand mode", and the hand status is continuously tracked. The
security of the re-activation is ensured because an "authenticated
body" is always connected to an "authenticated hand".

Figure 3 shows the relation between hand mode and body mode
and the transition logic between them. By applying a mixed strategy,
the true detection rate in the wild can be improved while security
is ensured.

5 PANOTRACK: HARDWARE
In this section, we describe the detailed hardware design of Pan-
oTrack and explain how to achieve panoramic scene sensing that
can capture both a body and an on-screen hand.

5.1 Camera Setting and Sensing Range
To enable panoramic vision that can capture both user-oriented
scenes and peripheral scenes, we chose a dual-mode160� �sheye
camera as a proof-of-concept sensor. The camera is �xed to the
top of the phone, simulating a potential camera position in future
smartphones. To capture clearer on-screen hands and reduce unre-
lated environment in the peripheral area, we tilted the camera30�

to the bottom. The valid FoV of the �sheye camera is140� (vertical)
� 360� (rotational). To achieve the around-device tracking, the ex-
pected sensing radius for is 2m. In Panotrack, the valid sensing
radius is 4m to capture a clear human body.

5.2 PanoTrack Hardware Prototype
We used a Samsung Galaxy S9+ smartphone (CPU, RAM: 4GB) with
a 5.8-inch touchscreen running Android 7.0. The phone was �xed
to a 3D-printed stand with a dual-mode 160-degree �sheye camera
on the top. The resolution of the output video stream is640� 480,
and the FPS is 30.

We implemented PanoTrack's algorithm in a PC server with
a GTX 2080Ti NVIDIA GPU with 11GB memory. The algorithm
pipeline is implemented in Python and pyTorch. The PanoTrack
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Figure 5: Our algorithm pipeline. First, we extracted near-�eld hand regions from the original image. Then we extract all the
keypoints and their spatial and temporal connections using a CNN-based model. Simultaneously, we predict near-�eld hand
status with a classi�cation model. Finally, we merge body detection results and the hand status classi�cation result to calculate
high-level semantic information.

system on the smartphone was implemented on an Android app that
runs in the background to control the lock-unlock logic. The �sheye
camera was connected to the PC server. The PC server processed
the video stream captured by the �sheye camera, analyzed the vital
information, and sent commands to the smartphone via WiFi in
real-time.

6 PANOTRACK: ALGORITHM
With the video stream captured by the �sheye camera as input,
the algorithm aims to output human keypoints, the spatial and
temporal relation of the keypoints, and near-�eld hand status of
every frame. PanoTrack can track the user's body movement, detect
the near-�eld hand, and control the authentication status in real-
time.

As shown in Figure 5, our algorithm pipeline consists of four
parts: preprocessing, continuous body tracking, near-�eld hand
behavior detection, and user-identity assignment. Given an image
captured by the �sheye camera, the pipeline �rst extracted a �xed
region in the image for near-�eld hand detection. Next, a convo-
lutional neural network (CNN) model was applied to acquire all
the keypoints and their spatial connections. These keypoints were
then associated temporally based on a tracking algorithm. Simulta-
neously, a near-�eld hand status was predicted by a classi�cation
model. Finally, the detected body keypoints and near-�eld hand
status were used to calculate user identity features including head
orientation, head distance and hand connectivity for user identity
assignment.

6.1 Preprocessing
Since the smartphone was in a �xed area in the image, the near-
�eld hand gestures (such as gripping, grasping, and touching) were
limited to a speci�c area. For better recognition of near �eld hand
gestures, we pre-fetched the near �eld region of the smartphone
in the image. To empirically determine the area, we collected 100
images of various hand gestures through a pilot study and manually
labeled the hand area of each image. The �nal region boundary is
the union of the labeled region (see Figure 4).

6.2 Continuous Body Tracking
The next step of our algorithm pipeline was to track human bodies
in the video stream, outputting all the keypoints and their spatial
and temporal relationships.

6.2.1 Body Keypoints and Association Detection.We use a CNN-
based model to predict the keypoints of body parts in each frame.
In our implementation, a pre-trained MobileNet V3 [31] was used
as the backbone network for image feature extraction. We followed
Cao[6]'s idea to decompose the mission of predicting body key-
points and their connections into predicting con�dence maps of
every keypoint and part a�nity �elds (PAFs) of every limb. After
con�dence prediction and PAF regression, we extracted all the local
maxima with high con�dence scores as keypoints and applied a
biparty graph matching algorithm to predict the optimized joint
connection. We �ne-tuned the model on the COCO 2017 dataset
[38].

6.2.2 Temporal Tracking.By applying the model above, we ascer-
tained the optimized keypoints and skeletons for each independent
frame. We proposed a method to associate the detected keypoints
in time domain. Given the keypoints and their spacial association,
we �rst organized the result in entity-based perspectives,i.e., each
image contains a set of entity-based structures, and each structure
stores keypoints, associations, and con�dence maps of the entity.
For each entity (person) in the current frame, we calculated the
probability that it is consistent with another entity in some previous
frames by:

p = exp¹�
�

jSi ;k
Ñ

Sj ; l j

Õ

n 2Si ; k
Ñ

Sj ; l

j jVi ;k;n � Vj ; l ;n j j2º

whereSa;b denotes the valid joint set of thebth person in frame
a.Va;b;c denotes the position of thecth joint of the bth person in
frame a.� is a scaling parameter. If probabilityp > � andji � j j � T,
we assigned the identity of thekth person in frame i to thel th

person in frame j. We set� = 10� 5, � = 0:9 andT = 5 based on the
pilot study.
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6.3 Hand Behavior Detection
For hand-behavior detection, we distinguished the following four
near-�eld hand statuses: hand-o�, gripping, grasping, and touching.
Taking the near-�eld hand region as input, we used a pre-trained
MobileNet V3 [31] model to extract the graphical features of this
region and then classify it with a multi-layer perceptron (MLP). We
initialize the MobileNet V3 layers with pre-trained parameters and
the MLP layers with normalized random parameters [28]. Then we
�ne-tuned the MLP parameters and the MobileNet V3 parameters
with Adam optimizer.

To alleviate the misrecognition caused by blurred frames and to
improve prediction con�dence and smoothness when determining
the label of the current frame, we took the recognition results of
the previous 2K (K=2) frames into account. The smoothed label was
the voting result of the majority of local predictions of these2K + 1
frames.

6.4 User Identity Assignment
The body and hand features acquired from previous steps were
further used to extract three high-level semantic features: head
orientation, head distance from the camera, and the connectivity
between body, hand, and phone.

The head orientation, and distance features were used for im-
mediate user identity assignment after authentication, while the
connectivity was used for "hand-to-body" or "body-to-hand" re-
assignment in the mixed strategy (see Figure 3).

6.4.1 Head Orientation and Distance.The nose, left ear, left eye,
right ear, and right eye were the �ve keypoints that the body key-
point detection model output. These keypoints were used to esti-
mate the user's head orientation along three axes (vertical, horizon-
tal, and rotational) and the distance of the head from the camera.

We de�ne the bias level in 3 axises as:

bv er t ical = 1+
¹Xlear � Xnoseº � ¹Xrear � Xnoseº

j jXlear � Xnosej j � j jXrear � Xnosej j

bhor izontal =
jjjXlear � Xleye j j � j j Xrear � Xreye j j j

j j jXlear � Xleye j j + jjXrear � Xreye j j j

brotat ional =
X0

x + �
X0

y + �
;X0 =

Xleye + Xreye

2
� Xnose

whereX� denotes the 2D coordinate of feature point� , andX0
x

(X0
y ) denotes x(y)-coordinate of pointX0. � is a smooth factor. If

jbv er t icle j < � 1 and jbhor izontal j < � 2 and jbrotat ional j < � 3, the
head is detected as "center-oriented". We set� 1 = 0:5, � 2 = 0:1,
and� 3 = 0:5 based on a pilot study. Similarly, we usedjjXlear �
Xleye j j + jjXrear � Xreye j j to estimate the distance of the user's
head from the camera.

6.4.2 Connectivity.To detect the connectivity between body, hand,
and phone, we developed a strategy based on �ood�ll algorithm.
We choose the wrist keypoints detected by body tracking algorithm
as the seeds and apply �ood�ll algorithm (using OpenCV [4]) in
RGB color space, with an empirical lower di�erence threshold of
L = ¹15; 15; 15º and an upper threshold ofH = ¹20; 20; 20º. Starting
from the seed points, the algorithm recursively selects the points
adjacent to the selected points whose color is within the range of
¹Cselected� L;Cselected+ Hº until no new points can be selected.

After running �ood�ll algorithm, we found the connected areas
which include all the wrist keypoints. To judge whether there is
connectivity between body, hand, and phone, we detected whether
the expanded areas touch or are close enough to the smartphone
boundary.

By continuously extracting the head and connectivity features,
the algorithm can keep track of the user's identity and the relation
between the phone and the user after authentication.

6.5 E�ciency Analysis
Currently, our pipeline runs 23 FPS: 4 ms for image fetching and
preprocessing, 19 ms for body keypoint detection, 7 ms for hand
status classi�cation, 5 ms for the calculation of temporal features,
head features and connectivity, and the rest for real-time visual
feedback rendering. Note that our prototypical implementation
could be optimized by 1) disabling visual feedback provision and
2) merging the mutual frontend network of the keypoint detection
model and the classi�cation model, the theoretical optimal FPS
for calculation should be over 30, which is beyond the camera's
streaming constraint.

7 STUDY 1: ALGORITHM COMPONENT
EVALUATION

We �rst conducted an user study to evaluate the performance of
each component in the PanoTrack algorithm pipeline: 1) body key-
point detection, 2) near �eld hand status classi�cation, and 3) user
identity assignment.

7.1 Participants and Apparatus
We recruited 10 participants (7 males) from the local campus. The
average age of all participants was 23.0 (SD=1.34). All participants
were familiar with the face authentication method, which we used
as the explicit method in this study. The apparatus was the same as
described in 5.2 and Figure 4.

7.2 Evaluation Metrics
For body keypoint detection, we measured the recognition accuracy,
precision, and recall of users from individual sampled frames at
di�erent distances. For near �eld hand status classi�cation, we
measured the accuracy of both 2-class classi�cation (hand-on and
hand-o�) and 4-class classi�cation (hand-o�, grasping, gripping,
and operating). For the user identity assignment, we measured the
accuracy of the assignment when the users unlocked the phone.

7.3 Data Collection
We collect the data by asking participants to perform speci�c tasks
with video recording turned on. Participants went through a brief
introduction of each task and signed the consent form.

First, we collected body data in di�erent distances, which is used
to validate the keypoint detection NN model described in Section
6.2.1. Participants were asked to perform free form movement in
three distances: 1)< 1m, 2)� 2m, and 3)� 4m and we recorded a
60-second video for each participant in each distance.

Then we collected four types of hand status data: 1) hand-o�-
screen, 2) hand-grasping, 3) hand-gripping, and 4) hand-operating,
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