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Figure 1: (a) The right angle prism mirror placed on the front camera. (b) The space above the touchscreen that can be covered. 
(c) A sample image captured by the front camera. (d) The derived depth image of the touching hand and the gripping hand. 

ABSTRACT 

We present HandSee, a novel sensing technique that can 
capture the state and movement of the user’s hands touch-
ing or gripping a smartphone. We place a right angle prism 
mirror on the front camera to achieve a stereo vision of the 
scene above the touchscreen surface. We develop a pipeline 
to extract the depth image of hands from a monocular RGB 
image, which consists of three components: a stereo match-
ing algorithm to estimate the pixel-wise depth of the scene, a 
CNN-based online calibration algorithm to detect hand skin, 
and a merging algorithm that outputs the depth image of the 
hands. Building on the output, a substantial set of valuable in-
teraction information, such as fngers’ 3D location, gripping 
posture, and fnger identity can be recognized concurrently. 
Due to this unique sensing ability, HandSee enables a variety 
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of novel interaction techniques and expands the design space 
for full hand interaction on smartphones. 
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1 INTRODUCTION 

Today, smartphone interaction is largely confned to the ca-
pacitive surface of the touchscreen. Numerous works have 
explored methods of overcoming this limitation ranging from 
enhancing the expressivity of touch (e.g. fnger identifcation 
[19] and posture [21, 55]), to leveraging grip posture as an 
interaction context (e.g. interface shifting [8, 33]), as well as 
expanding the input space beyond the touchscreen surface 
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(e.g. on the back [10, 54] or side [6, 8, 9] or around the device 
[7, 22, 24]). However, most of these works focus on inter-
action design. They either use dedicated sensing systems 
(e.g. Optitrack) or equip smartphones or users’ hands with 
additional hardware sensors to provide specifc and limited 
functionality. 
In this paper, we present HandSee, a compact sensing 

technique that can capture rich information about hands 
and fngers interacting with a smartphone. We re-purpose 
the front camera by mounting a hypotenuse-coated right 
angle prism mirror on it, and direct it to look down along 
the screen’s surface. As shown in Fig. 1, the feld of view 
(FOV) covers the gripping fngers and the entire touching 
hand. The prism mirror provides two optical paths through 
which the front camera can look outward. This creates two 
virtual cameras that form a stereo vision system, as shown 
in Fig. 1.a. The stereo vision adds depth information that can 
further augment the sense ability. 
To capture depth images of hands, we develop a pipeline 

of computer vision algorithms, which consists of four compo-
nents: an efcient skin segmentation with online threshold 
calibration, stereo matching that reconstructs the depth im-
age of scene over the touchscreen, and a merging algorithm 
that derives the depth image of hands. Based on the output, 
a set of valuable interaction information such as fngers’ 3D 
location, gripping posture, fnger identity can be derived, 
which enables a wide range of hand/fnger interaction tech-
niques on smartphones. 
HandSee expands the space of full hand interaction on 

smartphones, which carries forward the idea that interprets 
users’ intent beyond signals from the 2D capacitive screen 
[24]. We re-outline the interaction space into three sub-
spaces: Touching Hand Only, Gripping Hand Only and Hand-
to-Hand interaction. We propose a number of novel interac-
tion techniques that fll in this space, and demonstrate the 
power of HandSee. Our user study shows that these tech-
niques are well received by the users. They are easy to learn, 
convenient and fun to use. 

Specifcally, our contributions are threefold: 

(1) A novel sensing scheme that captures both the touch-
ing hands and gripping fngers on a smartphone. We 
achieve stereo vision by placing a prism mirror on top 
of the front camera. 

(2) A real-time pipeline to validate our setup’s computa-
tional feasibility and compute the depth map of the 
user’s hands, based on which, valuable interaction in-
formation can be derived. 

(3) An expanded design space for full hand interaction on 
smartphones, as well as a number of novel interaction 
techniques. 

In the remainder of this paper, we frst review prior lit-
erature on hand/fnger interaction and sensing. We then 
describe the hardware design of HandSee, followed by our al-
gorithm pipeline. We move on to outline the design space and 
describe novel interaction techniques with feedback from 
a preliminary user study. We conclude this research with a 
discussion on the practicality, limitations and directions for 
future work. 

2 RELATED WORK 

In this section, we frst review literature about enhancing 
hand/fnger interaction on smartphones. Meanwhile, we dis-
cuss the sensing solutions in those works. We then give a 
brief introduction of general hand/fnger sensing techniques, 
with a focus on camera-based ones. 

Enhancing Hand/Finger Interaction on Smartphones 
Expanding Expressivity of Finger Touch on Screen. A straight-

forward way to increase expressivity of touch is to leverage 
the state of touching fnger. TapSense [21] recognizes the dif-
ferent parts of a human fnger (e.g. tip, pad, nail and knuckle) 
tapping on the screen by analyzing sounds resulting from the 
tapping impact. Xiao et al. [55] describe a method that esti-
mates the pitch and yaw of fngers relative to a touchscreen’s 
surface based on the raw capacitive sensor data. DualKey 
[19] instruments the index fnger with a motion sensor. It en-
ables selection of letters on a miniature ambiguous software 
keyboard (e.g. a smartwatch) with diferent fngers. 
In addition, a few works explored leveraging the above-

screen space to improve interaction. Air+Touch [7] describes 
the concept of interweaving on-screen touch and in-air ges-
tures to increase the expressivity of touch. The authors built 
a prototype system with a depth camera. Thumbs-Up [22] 
presents a similar idea that is specifc to thumb input for 
one-handed interaction. Pre-touch [24] researches the po-
tential of leveraging the status of the approaching fnger, 
by increasing the sensing range of capacitive touchscreen. 
SegTouch [52] instruments the index fnger with a touchpad, 
and allows users to perform thumb slides on it to defne 
various touch purposes. 

Interaction Beyond the Touchscreen. Researchers have ex-
plored extending smartphone interaction beyond the touch-
screen surface. Some of these works enable input on the 
side or the back of the device. [35] detects fnger taps on 
the sides of a smartphone using the built-in motion sensors. 
BackXPress [10] places a pressure sensitive layer on the back 
of the device, which allows pressure input on the back to 
augment the interaction with the remaining fngers on the 
front. Back-Mirror uses a mirror to refect the back surface 
to the rear-facing camera of the phone, and recognizes hand 
gestures based on the visual pattern on the back surface. 



Others explored the 3D space around the device. Hover-
Flow [28] uses infrared proximity sensors to track hands in 
the device’s proximity. It can sense coarse movement-based 
gestures, as well as static position-based gestures. SideSight 
[4] embeds infra-red (IR) proximity sensors along the side of 
small device and supports single and multi-touch gestures in 
the space around the device. WatchSense [49] supports on 
and above-skin fnger input for interaction on the move. The 
authors envisioned a depth sensor embedded in a wearable 
device to expand the input space. Song et al. [48] demon-
strated how a computer vision algorithm can enable the 
rear-facing RGB camera to recognize in-air hand gestures 
along with a series of example applications. 
Surround-See [57] presents a prototype that is similar 

to ours. It places an omni-vision lens on the front facing 
camera, and provides the smartphone with peripheral vision. 
The authors demonstrated various applications based on the 
ability to sense the environment and the objects of interest. 
These include detecting hand and recognizing hand gestures 
in the surrounding mid-air. In comparison, our work focuses 
on users’ hands holding and touching the smartphone. 

Grip Sensing and Grip-Aware Interaction. The grip posture 
of a user holding a smartphone (i.e., two-thumb, one-thumb 
and one-index) varies according to the form factor of the 
device size and interaction situations [12]. Meanwhile, grip 
posture is an important context for touch interaction on 
smartphones. It signifcantly afects users’ input capability, 
such as the range of comfortable interaction and accuracy of 
touch, and so on [30]. To this end, a number of approaches 
have been proposed to sense grip posture. These works either 
use on-device sensors such as ones based on touch tracing 
[34], on-device motion sensor [41, 42] or motion sensor on 
the tapping hand [33] or a combination of the two [15, 18, 45], 
or by using additional capacitive sensors attached on the back 
of the device [6, 8, 9]. The basic principle is that diferent 
grip posture will result in corresponding holding or touch 
behavior that can be captured by these sensors. By taking 
advantage of classifcation algorithms such as a SVM, one 
can detect up to fve diferent grip postures. Depending on 
the task, the detection precision, in current research, varies 
from 85%-99%. 

Researchers have tried to incorporate grip posture as con-
textual information in order to enhance smartphone interac-
tion. Grip-aware applications include improving the decod-
ing algorithm of software keyboards [14], automatic interface 
orientation [8], interface shifting [33], endpoint prediction 
[41], automatically triggering applications [6], layout switch-
ing and continuous positioning [9]. 

Hand/Finger Tracking for General Purpose 

Accurate hand/fnger tracking is of great signifcance for 
human computer interaction. Various tracking techniques 
have been researched, such as using capacitive sensors [31], 
infrared signals [20], ultrasound [40], millimeter wave radar 
(i.e. Soli [32]), and monocular RGB camera [38] or depth cam-
era [46] or a combination of the two. While some techniques 
can only detect motion (e.g. Soli and ultrasound), others can 
capture both motion and static posture. 

Among these techniques, camera-based techniques show 
the greatest potential for providing complete scene infor-
mation. In literature, there is a substantial body of work 
that deploys cameras on devices [7, 49], on the human body 
[5, 27, 36], and in the environment [46] to track hands. Com-
mercially, LeapMotion, a stereo camera-based technique, has 
received wide attention in desktop and VR applications. How-
ever, no one has tried to use the available camera on smart-
phones to capture detailed information about the hands of 
the user interacting with the smartphone when they are 
positioned above the screen surface. We deem this would 
have great potential for practical use due to the wide use of 
current smartphone design. 
Hand tracking is also an important and popular topic in 

computer vision research. Both model-based and machine 
learning-based approaches are researched. Model-based ap-
proaches rely on traditional model optimization and match-
ing algorithms and require incorporation of extensive do-
main knowledge, such as hand kinematic models [51, 56], 
predicting spatial and temporal features for tracking [47], 
hand skeleton matching [11]. In contrast, machine learning 
based approaches do not need the researcher to defne a 
model but need data from which they implicitly learn the 
required function. The limitation of machine learning ap-
proaches is the lack of high quality labelled data. Recently, 
researchers have tried to combine these two approaches. For 
example, GANerated Hands [37] uses a CNN to segment the 
hand from noisy background, and then applies model based 
optimization to estimate hand posture. 

Compared with these works that intend to capture hands 
in arbitrary postures from arbitrary viewpoints, our problem 
space is much more limited as we focus on hand posture dur-
ing interactions with a smartphone. The reduced problem 
space allows for better results. We use these previous re-
search works as a strong platform as a proof of the technical 
feasibility of hand tracking. 

3 THE OPTICAL DESIGN 

In this section, we describe the optical model of HandSee, 
which explains how to achieve stereo vision of the scene 
above the touchscreen with a right angle prism mirror placed 
on the front camera. 



Figure 2: Field of view of the front camera and the interac-
tion space above the touchscreen. 

FoV of Camera 

The right angle prism has a refective coating on its hy-
potenuse. It mirrors the space above the touchscreen into 
the camera. To ensure that hands can be captured, the Field 
of Vision (FoV) of the camera should not be too small. For 
example, we calculate it to be at least 72 (landscape) x 35 
(portrait) degrees for a 6-inch smartphone. The calculation 
is based on the assumption that the gripping hand is usually 
within the 10 cm range at the bottom of the screen. There-
fore, as long as a user grips the phone in a normal way, the 
gripping posture can be accurately detected regardless of the 
gripping location. For those do not have such a wide camera, 
some gripping fngers might be missing, but the touching 
hand can usually be seen. 

Front Camera-based Stereo Vision 

In a typical stereo vision system, there are two cameras look-
ing at the same scene. HandSee achieves this with two virtual 
cameras. As shown in Fig. 3, a single object has two optical 
paths into the cellphone camera, which projects onto difer-
ent locations on the image plane. This equivalently creates 
two virtual cameras. Virtual Camera 1 is slightly above the 
touchscreen, which is the result of once-refection on the 
hypotenuse of the prism mirror (the green line). Virtual Cam-
era 2 is resulted from the light being twice refected (the blue 
line), with the frst refection occurs on the touchscreen or 
the horizontal prism leg. The two virtual cameras, which 
look along the screen surface in parallel, form a stereo vision 
system. 
The idea of providing stereo vision with a single camera 

is not new. Researchers have explored varying approaches 
using prisms or mirrors [13, 16, 25, 58]. However, in prior 
solutions, a prism was used equivalently as a mirror — either 
the two optical paths fying into the camera were refected 
by two mirrors (or prisms) respectively, or one path few 
directly into the camera and the other was refected by a 
mirror (or a prism). In contrast, our approach uses a single 
prism to refect two optical paths into the camera. The "to-
tal internal refection" occurring on the inner side of the 

horizontal prism leg provides a high-quality image, which 
is of great importance for stereo estimation. In addition, to 
our knowledge, we are the frst to apply this approach on a 
smartphone. In particular, we succeed in “rotating” the front 
camera for a screen parallel view and afording stereo vision 
at the same time with a single prism mirror. 

Figure 3: Front camera-based stereo vision: The green and 
blue lines each represent an optical path that light takes in 
travelling from the same object to the camera 

Diference between Two Virtual Cameras 
The image quality in the two virtual cameras are not equal. 
For light that goes into Virtual Camera 1 (the green line), 
total refection occurs on the hypotenuse of the prism. The 
resulted image is of high quality, as if captured directly by 
the camera. 
For Camera 2, the condition is more complex. The frst 

refection can occur either on the glass surface of the touch-
screen or on the prism leg. For the former, the refractive 
index of the prism glass is higher than that of the air. This 
results in "total internal refection" occurring on the inner 
side of the prism leg–the light cannot pass through and is 
entirely refected. Thus, this part produces a high-quality 
image with equal brightness and sharpness to the image in 
Virtual Camera 1. 

In contrast, light refected on the touchscreen is attenuated 
due to partial refection. This results in a relatively darker 
band in the captured image, as shown in Fig. 4. By adjusting 
the placement of the prism over the camera, we can min-
imize the height of the dark band. Later in this paper, we 
will describe how to remove the darkness with a brightness 
compensation function before performing stereo estimation. 

4 THE ALGORITHMS OF HANDSEE 

As a sensing technique, HandSee has two outputs: a depth 
image of hands and fngertip recognition results. Based on 
them, applications like gesture classifcation and full-hand 
interaction techniques can be further developed. 
Fig. 5 illustrates the pipeline of deriving depth image of 

hands. Given a monocular RGB image, the pipeline frst 



Figure 4: Diferent refection rates on the prism leg and 
touchscreen of the smartphone, which leads to a darker 
band in the image of Virtual Camera 2 

preprocesses it into two rectifed stereo images. Then, color-
based segmentation is applied to obtain a skin mask con-
taining hands and fngers. Meanwhile, stereo estimation is 
performed to calculate a depth map for each pixel in the im-
age. Next, the skin color mask and depth map are combined 
to produce a robust segmentation of the user’s hand and 
fngers’ areas in the input image. Note that the main purpose 
of the pipeline proposed in this paper is to validate the feasi-
bility of online full hand sensing with the proposed sensing 
scheme. The algorithms should probably need to be refned 
or optimized if deployed on smartphones for practical use. 

Pre-Processing 

Since the cellphone surface does not refect nearly as clearly 
as the mirror surface does, we see a signifcant diference in 
brightness levels between the images from the two views. 
To improve the accuracy of stereo estimation, we develop 
a simple color correction procedure for the image. We as-
sume that the pixel color equation can be approximated as 
Output = Input ∗ R + L [2]. Here, R is the refection factor, 
depending only on the physical properties of the phone sur-
face and L is the surface luminescence of the phone. Since 
our camera is very close to the phone surface, the L term is 
nearly zero under normal lighting conditions. Using images 
collected against a white backdrop we used the least-squares 
estimation method to ft the parameter R for each pixel. We 
use this to remove the darker areas in each frame. Fig. 6 
shows the result of removing the darker areas. 
Note that although our data is collected when the screen 

is on, the impact of screen illumination is rather weak. That 
is because the virtual camera is low above the screen that 
the emergence angle is too large for illuminating efectively. 
This is why our pre-processing method works for diferent 
screen brightness. 

Stereo Estimation of the Scene 

We frst use a checkerboard along with the OpenCV API [3] 
to estimate the focal length, optical center, distortion coef-
fcient of the front camera and the rotation and translation 
relationship between the two cameras of the binocular vision 
system. 

We chose an efcient, GPU based, implementation of the 
Semi-Global Matching algorithm [23] as our stereo matching 
algorithm because of its high computational speed and satis-
factory accuracy. This algorithm outputs a depth estimation 
for each pixel using our binocular viewing system. 
For our system, the theoretical estimation of depth error 

is D2/800 (cm) [50], where D (cm) is actual depth, which 
means for a depth of 5-10cm, the error is 0.3-1.25 mm. Note 
that this estimation only represents a lower bound of depth 
error, supposing the calibration and stereo matching are done 
perfectly. 

Skin Detection with Online Calibration 

The stereo estimation is not perfect. For example, the back-
ground can falsely generate 3D points inside or near to the 
hand. Using skin color to flter such noise can increase the 
robustness of the result. The challenge is to account for the 
varying illumination conditions while restricting the hue 
and saturation ranges to eliminate background region as 
much as possible. Although skin detection has been exten-
sively studied, the existing solutions ([43] for a review on 
color based pixel classifcation) do not satisfy our require-
ment due to their focus on recall of all possible human skin 
color as compared to our need for serving only one user at 
a time. Moreover, our skin detection modular requires high 
computational efciency for real-time interaction. 
Based on the above considerations, we design our skin 

detection modular with two components shown in Fig. 7: one 
to simply apply upper and lower hue and saturation thresh-
olds to the image to segment the skin area, while the other 
one dynamically calibrates these upper and lower thresholds 
every few frames. In particular, we train a Convolutional 
Neural Network [1] to identify the skin pixels as a semantic 
segmentation task, making use of the FSD [43] and HGR 
[17, 26, 39] datasets. 

Deriving Depth Image of Hands by Merging Skin 
Color Region and Depth Estimation 

The focus of our skin segmentation algorithm is to maximize 
precision, i.e, minimize background region in segmentation. 
To then maximize recall, we combine the skin color mask 
with the depth estimation map to produce a robust segmenta-
tion mask of the hand and fnger regions. First, we threshold 
the skin color mask by removing areas that have a depth 
value below an empirically obtained threshold value T (set 

https://0.3-1.25


Figure 5: Pipeline of our real-time system for segmentation and stereo estimation of hands interacting with a smartphone 

Figure 6: Compensating for diference in brightness 

Figure 7: Online Skin Color Calibration updates color range 
periodically depending on user’s skin color 

as 22 in our experiments). This removes any remaining back-
ground regions that have similar colors to the user’s skin. 

We then use this result as a mask for our depth estimation 
output. We are left with the depth values of the user’s hands 
and fngers. Using a Gaussian distribution centered around 
the mean of these depth values we discard pixels with depth 
values 1 (empirically obtained) standard deviation away from 
the mean on either side. This gives us a depth-based mask for 
the hand and fnger regions excluding some high frequency 
noise pixels in the hand area. 
The fnal result is a "bitwise or" operation of the depth-

based mask and the skin color-minimum depth thresholded 
mask. We can use "bitwise or" safely because both our results 
are made using tight bounds to exclude regions other than 
the regions of interest. Qualitative analyses of many test 

cases have shown that our design produces a near perfect 
mask for hand and fnger regions of the image. 

Fingertip Recognition 

Our fngertip recognition algorithm is inspired by the fn-
gertip detection part of [7] and improved by incorporating 
more geometric features like shape, convex hull, moments 
and global maxima features as described in [29] and [44]. 
Compared with [7], in which the distance of hand points 
from the hand centroid directly is used for fnding fngertips, 
our approach frstly fgures out all the connected regions of 
the image and employs these extra features to fnd candidate 
regions of fngertips. 
In specifc, for every candidate region, we calculate the 

region centroid as well as the 3D distance from the region 
centroid of every contour point. Then we fgure out all the 
distance maxima as fngertip candidates and flter out the 
false candidates using angle restrictions on the contour that 
the fngertip is a part to get a refned result. Incorporating 
feature matching increases the recall rate of detecting fn-
gertips while spatial pattern restrictions and contour angle 
restrictions remove false positives, improving precision. The 
use of simple features and hierarchical feature matching also 
ensures the algorithm is also efcient in calculating results. 

Evaluation 

We put all the diferent pipeline sub-parts together calculate 
the frames-per-second (FPS) that our algorithm can process. 
The setup is tested on a server with 1 GTX 1080 Ti NVIDIA 
GPU with 12GB memory and 1 Intel i7-7700k CPU without 
taking network latency into account. The FPS for all parts 
of our pipeline is 30, specifcally, 13 ms for pre-processing, 
10ms for SGM-GPU, 4 ms for skin detection and deriving 
depth image of hand, 0.4ms for fngertip recognition, and 
2.6ms for others. 
For validating our setup’s computational feasibility, our 

data collection included 10 users (5 males and 5 females) x 18 



Figure 8: Touching Hand Only Interaction: (a) Painting Tool, 
(b) Table Touch, (c) Slingshot Game 

tasks (screen tapping tasks with the 10 diferent fngers and 8 
gripping postures) x 4 varied lighting scenarios (outdoor day-
light, natural indoor light, bright focused lamplight, dim am-
bient lamplight) x 2250 frames (90 seconds for each sub task). 
We followed the leave-one-out cross-validation method to 
train and test classifcation models, the results are as follows: 
the accuracy of fngertip location is 98.0%, the accuracy of fn-
ger identifcation is 98.0% for 3 classes (left/right-thumbs and 
others), and 89.7% for 5 classes (left/right-thumbs, left/right-
index and others); the accuracy of detecting gripping hand 
is 96.7%; the touch sensing range on the table surface is 20 
cm below the bottom of the phone. Based on the output, a 
substantial set of valuable interaction information can be 
recognized simultaneously. 

5 DESIGN SPACE AND EXAMPLE APPLICATIONS 

HandSee provides three unique benefts when used to aug-
ment touch input. First, it covers a signifcant interaction 
space comprising of the space above the touchscreen. Second, 
it can sense the touching hand and the gripping fngers simul-
taneously. Third, it outputs the location of hands and fngers 
in 3D space. These benefts expand a promising design space 
of novel interaction techniques on smartphones. To better 
understand the potential, we divide the design space into 
three sub-spaces: Touching Hand Only, Gripping Hand Only, 
and Hand-to-Hand Interaction. Among these, the sub space 
of hand-to-hand interaction is novel, while the other appli-
cations are not new. We discuss the features and benefts 
of each sub-space and provide example applications. Our 
purpose in this section is not to enumerate all of them, but 
to illustrate the design possibilities and explore its potential. 

Touching Hand Only 

HandSee tracks the comprehensive state of the touching 
hand, including 3D location of the operating fnger, fnger 
identity and fnger posture. Interaction techniques can lever-
age them for not only improving the input expressivity but 

Figure 9: Gripping Hand Only Interaction: (a) Cursor Mode, 
(b) Camera, (c) Auto-UI 

also allowing applications to register inputs from beyond the 
touchscreen surface plane. 

Finger Identification and Posture. Previous works have ex-
plored fnger-worn sensors for fnger identifcation [55] or 
estimating fnger posture based on capacitive signals of the 
touchscreen [19]. HandSee supports these two concurrently 
and in a non-intrusive way. We’ve designed an example appli-
cation that incorporates both these elements: a painting tool 
(Fig.8.a). The user can select diferent tools (e.g. pen, eraser 
and etc) with diferent fngers, and set the size of brush by 
adjusting the fnger’s angle against the touchscreen. This 
signifcantly reduces the time taken for selecting tools and 
parameters. 

Extend Touch to Table Surface and Mid-Air. A touchscreen 
has a number of limitations such as the limited size, target 
occlusion during interaction [53], unresponsiveness to a wet 
hand and so on. When a phone is placed on a fat table, 
HandSee allows users to touch input on the table surface 
at the bottom of the phone (Fig.8.b). Users can perform tap, 
move, and multi-fnger gestures (e.g. zoom and rotate) on 
this extra surface. Similarly, interaction can be extended into 
3D, providing a more intuitive interaction with 3D objects. 
Fig.8.c shows a demo application: Slingshot Game. In the 
Game, a user pulls the slingshot, using 3D space to adjust the 
direction and intensity of releasing the bullet. This creates a 
more comfortable, immersive, and enjoyable experience. 

Gripping Hand Only 

The griping posture (i.e. which hand is used for holding 
the cellphone) is an important interaction context on smart-
phones. Previous research has investigated various sensing 
techniques to detect it (detailed in Section 2). In comparison, 
HandSee can not only identify gripping posture, but also 
track the location of the gripping fngers around a smart-
phone. This ability further enables novel input techniques. 

Gripping Posture as a Context. Modern smartphones usu-
ally have a screen size that is not suitable for one-handed use. 



Figure 10: Hand-to-Hand Interaction: (a) FingerButton, (b) 
FingerBar, (c) Thumb-to-Thumb 

One solution is to detect which hand is used, and adjust the 
UI layout to make needed widgets easier to acquire, as shown 
in Fig.9.c. Another potential is that we can defne gripping 
posture-based shortcuts. For example, the gripping posture 
for "taking a photo" (Fig.9.c: two thumbs on one side of the 
phone, and other fngers on the opposite side) can automati-
cally launch the camera. This can reduce the cumbersome 
and time-consuming process of fnding the camera app on a 
smartphone to 1 second. Although these two concepts are 
not new, we deem them as representative and well refecting 
HandSee’ applicability. 

Gripping Finger-based Gesture Input. When a user holds a 
phone in one hand, her gripping fngers still have the room 
and fexibility to move and she can, for example, move the 
index fnger away from the screen edge. This creates the 
possibility for gripping fnger-based gesture, an input space 
that has not been explored before. HandSee is well suited 
to this approach due to its ability to sense the movement of 
gripping fngers. To demonstrate the beneft, we propose a 
novel technique that allows users to switch between fnger 
touch and cursor control by a stretching of the index fnger. 
With this function, a user can easily switch to cursor mode 
and acquire an object that is out of thumb’s reach, as shown 
in Fig.9.a. 

Hand-To-Hand Interaction 

An important feature of HandSee is that it can track the 
touching hand and the gripping fngers simultaneously. This 
opens the opportunity of hand-to-hand interaction on smart-
phones. For example, one hand can touch the other hand to 
perform inputs. In addition to adding expressivity, this ap-
proach can also reduce the participation of visual attention, 
by leveraging the proprioception between two hands. As a 
result, input can be easier and faster. 

Finger Bar and Finger Buton. A typical posture of interact-
ing with a phone is one hand holding the phone and the other 
performing touch. In such a scenario, the gripping hand can 

be used as a touchable interface. To illustrate the concept, 
we propose two techniques. FingerBar (Fig.10.b) allows a 
user to slide a fnger on the gripping thumb to provide in-
put to a one-dimensional slider (e.g. controlling the volume). 
FingerButton allows a user to tap on gripping fngers as aug-
mentations to on-screen buttons (Fig.10.a). Both techniques 
reduce required operational steps and augment the range of 
available input, thus increasing interaction efciency. 

Thumb-to-Thumb Gesture. Another typical phone inter-
action posture is bimanual: both hands hold the phone and 
perform touch input. For this scenario, we propose a Thumb-
to-Thumb gesture, as an easy-to-perform and fast operation 
for mode switch or triggering a second view. Fig.10.c illus-
trates an example usage for enhancing typing experience. 
When flling a search query in a browser, a user might want 
to refer to a previous screen for a phone number or an ad-
dress. Currently, the user has to switch back to the previous 
application, try to memorize the string and return to input. 
With thumb-to-thumb gesture, once two-thumb contact is 
detected, the system can put the previous screen on top of the 
browser so that the user can easily refer to the content. Then, 
he/she can release the two thumbs to input text. This pro-
vides a very efcient and lightweight way to toggle amongst 
modes on smartphones. 

6 PROTOTYPE OF HANDSEE AND EXAMPLE 
APPLICATIONS 

We prototype HandSee on an LG V20 smartphone (CPU: 
Quad-core 2.2 GHz, RAM: 4GB) running Android OS. The 
phone has a front camera on the upper left corner with an FoV 
of 100 x 80 degrees. The prism we used has dimensions 12mm 
x 10mm x 10mm. We 3D printed a housing to fx the prism on 
the smartphone. The total weight of the housing and prism 
is 15 g. Fig. 1 (a) shows the top view of our prototype, and 
Fig. 1 (c) shows an image captured when a user is interacting 
with our prototype. 

Currently, we implement HandSee’s algorithms on a PC 
server (1 GTX 1080 Ti NVIDIA GPU with 11GB memory) 
running Linux OS. On the smartphone, we develop an An-
droid program running as a background service. It collects 
video from the front camera, and sends it, via WiFi, to the 
server in real time. The server processes the image and sends 
the recognition results back, which are further used by our 
customized applications to demonstrate our interaction tech-
niques. To guarantee real-time performance, we downsize 
the image to 640x480. We tested the round trip latency from 
sending the image to receiving results on the phone to be 
80ms (including 50ms delay of the network). 
We prototype the nine interaction techniques described 

in Section 6, based on the depth image of hands and fn-
gertips’ 3D location. The purpose was to demonstrate the 



user experience of each technique. We frst trained a CNN 
model to recognize 8 postures: left/right-hand gripping, one 
hand gripping and the other touching (2), two-hand grip-
ping, thumb-to-thumb touch, single-hand grab (e.g. picking 
up a phone), and camera gripping posture. We measured 
the recognition accuracy to be 96.7%. Based on the posture 
result, we developed specifc recognition/tracking algorithm 
for each application independently. For Auto-UI, Camera, 
and Thumb-to-Thumb, we directly use the posture result. For 
Painting Tool, the accuracy of identifying fnger use (index 
vs. middle) was over 98%. For Table Touch and Slingshot 
Game, we directly read the 3D location of the fngertips. For 
FingerButton and FingerBar, we used the fnger location and 
detected the contact of the touching fnger and gripping fn-
gers. For Cursor Mode, we analyzed the movement of the 
index fnger (the one nearest to the camera). 

7 INFORMAL STUDY 

The goal of this study is to gain users’ subjective feeback on 
the interaction techniques enabled by HandSee. We recruited 
12 participants (5 females) aged between 20-28 years, from 
local campus to participate in the study. All participants 
used a touchscreen smartphone phone on daily basis and 
had owned one for more than 4 years. 
We tested the nine example interaction techniques. Be-

fore the experiment, we introduced the working principle of 
HandSee. Then we tested the techniques one by one. For each 
technique, we frst demonstrated our interaction technique. 
After that, a participant was allowed to use our technology 
freely. We fnally interviewed him/her after each technique 
for their comments. In addition, participants were asked to 
indicate their agreement with four statements using a 7-point 
Likert scale. They are: 1) The input is convenient. 2) The in-
teraction is easy to learn. 3) The technique is fun to use. 4) I 
want to have it on my phone. 

Result 
Fig.11 shows the subjective feedback of users regarding the 
four statements. Results showed that all nine techniques 
were well received by the participants. They were conve-
nient to use (score=6.0), easy to learn (score=6.3), fun to use 
(score=6.2), and desired by the users (score=6.0). These re-
sults also indicated the room for interaction improvement 
on modern smartphones. 

Users’ comments also validate the design of our interaction 
techniques, and point to other applications and scenarios 
that can beneft from HandSee. We selectively report some 
of them. 

Touching Hand interaction. Users appreciated using difer-
ent fngers to choose diferent tools, since it saved them from 
repeated selection operations. One user suggested musical 
instrument applications (such as guitars): he can use diferent 

Figure 11: The subjective feedback of users. 1=Disagree 
strongly, 7=Agree strongly 

fngers to play diferent chords. Also, it is suggested that the 
tabletop can be used for playing two-player games or typing 
on a virtual keyboard. Users like to manipulate game objects 
in mid-air, as one user commented, "it’s feels really natural, 
the slingshot game is supposed to be played like that." Some 
users hoped to play AR games with mid-air hand gestures 
and believed it would be more immersive than before. 
Gripping Hand interaction. Users felt really convenient 

as the UI layout automatically adjusted after switching the 
gripping hand, making the common buttons appear in a 
position within reach. User thought that "it allowed me to 
touch a comfortable position, and helped me in holding my 
phone more stably." They also appreciated that "it doesn’t 
require my active intervention, they’re predictive!". Besides, 
users felt comfortable to move the gripping fnger, and said 
"the fnger is still fexible when holding a phone". Users also 
expressed their willingness to associate other functions to 
their gripping fngers, such as shortcut for commonly used 
applications. Users particularly liked the idea of opening 
camera with a gripping gesture, thought that it could “help 
them never miss a picture moment", and could be very useful 
in many scenarios, such as shooting lively small animals, 
and the soon-to-be-switched PowerPoint. 

Hand-to-Hand Interaction. Users felt that it was quite novel 
and reasonable to interaction with smartphone by touching 
on gripping hand. They commented “touching any position 
of the thumb is easy with my other hand." They also reported 
that "sliding on the fngers has tactile feedback, which is more 
comfortable than mid-air gestures." Meanwhile, some users 
thought that touching on the fnger button was "as natural as 
taking paint with a brush while drawing." Users consistently 
liked using thumb-to-thumb gesture to evoke the thumbnails 
view of the previous application. Users thought this func-
tion was really practical, and the thumb-to-thumb gesture 
was very easy to learn, and did not interrupt the ongoing 
interaction. 

8 DISCUSSION 

In this section we discuss issues concerned with the deploy-
ment and adoption of HandSee in practice. 



Form Factor 
Overall, our current implementation of HandSee is compact. 
It only requires an additional right-angle prism mirror with 
a height of 10mm above front camera on the screen surface. 
According to our study, this prism does not disturb touch 
input on the major region of the touch screen and was ac-
cepted by all the participants. On the other hand, the height 
of prism can be further reduced. For example, if only the 
fngertips of the touching hand are of interest, the FoV in the 
vertical direction can be smaller. Besides, a convex mirror 
can also reduce the size of the prism but will distort the im-
age and needs more dedicated calibration. Finally, it is best 
that a smartphone can be re-designed to contain the optical 
structure, for example, a motor-based mechanical structure 
to popup the prism when interaction is needed (e.g. vivo 
NEX S). 

Hardware Support on Smartphone 

HandSee imposes additional requirement for sensing and 
computing on a smartphone. But we think that it is con-
sistent with development of technology: 1) Sensing Hard-
ware. There emerges a trend to place additional cameras on 
commodity smartphones to provide better user experience 
(e.g., iPhoneX); 2) Computing Software. The state-of-the-art 
computer vision algorithms have demonstrated their capa-
bility in solving relevant problems (e.g., hand tracking via 
monocular RGB cameras [37]). In comparison, our problem 
is constrained on the space above a phone’s touchscreen 
and might be less complex to solve. 3) Computing Hardware. 
Modern smartphones are incorporating hardware support 
for computer vision and machine learning algorithms that 
target real-time performance. 

Power Consumption 

Running computer vision algorithms on mobile devices al-
ways raises concerns of power consumption. While it might 
have been more controversial a decade ago, recently, more 
and more CV applications are being deployed on mobile de-
vices, such as face recognition, AR/VR and so on. For Hand-
See, optimization of power consumption can be done by 1) 
using low-powered cameras (e.g. those with low resolution) 
and computing chips (e.g. hardware acceleration), and 2) 
turning on HandSee when needed, for example, in particular 
applications or only after a touch event is reported by the 
capacitive touch screen. This will reduce the computation 
load from continuous video processing to a single frame for 
per touch event. 

RGB Camera versus Infrared Lighting and Sensing 

We now implement HandSee using phones’ front camera. 
The advantage is that the RGB image ofers rich color in-
formation, which is important for our hand skin detection 

algorithm. However, the downside is that the algorithms 
heavily depends on illumination condition. Even if the cam-
era screen can provide illumination, low illumination in the 
environment will still afect the quality of depth estimation. 
An alternative solution is to adopt infrared lighting and 

sensing, which is widely used in practice (e.g., LeapMotion, 
Kinect and iPhoneX). Infrared lighting can guarantee the 
stability of illumination, and help flter out the background 
(by tuning the lighting power to illuminate hands and fngers 
in the near range, and leave the background in darkness). 
This would reduce the complexity of the recogntion algo-
rithms. However, the shortcoming is that we lose the rich 
RGB information. 

Privacy Issue 

Camera use is a major source of privacy concern on smart-
phones. HandSee is no exception. Here, we analyze the risk. 
HandSee looks from the top down along the screen surface. 
In normal use, it would see users’ chest as the background. 
Therefore, the privacy risk might be relatively lower com-
pared with cases where a camera shoots at a wide open space. 
To further lower the risk, the aforementioned infrared solu-
tion might be preferred because the illumining distance can 
be controlled. Finally, we still think the best way to protect 
privacy is to guarantee that computation is done locally on 
smartphones. 

9 LIMITATION AND FUTURE 

The present research demonstrates the feasibility and poten-
tial of HandSee, but is still limited in the following aspects, 
which also point to possible avenues for future work. 

First, our current implementation of HandSee algorithms 
is on PC, sending the recognition results back to the smart-
phone. For practical use, we need to research and deploy the 
algorithms on smartphones, with a special concern on the 
efciency and power consumption. 
Second, we need to further test and improve the perfor-

mance of HandSee algorithms by taking various illumination 
condition and skin color into account. Also, the infrared light-
ing and sensing solution deserves exploration. 
Third, the expanded space of full hand interaction needs 

further exploration. Future works can fll the space with 
more interaction techniques and conduct formal user studies 
to evaluate the usability of these techniques. 

10 CONCLUSION 

We present HandSee, a novel technique to sense and enable 
full hand interaction on smartphones. HandSee re-purposes 
the front camera to provide stereo vision, focusing on hands 
and fngers interacting with smartphone. HandSee is consis-
tent with the recent hardware developments of smartphones, 
such as the increasing number of cameras, and on-device 



GPU/NPU acceleration. We also contribute a reference imple-
mentation of the HandSee pipeline. The pipeline features on-
line hand skin detection and stereo matching, which together 
provides robust sensing capabilities. The current implemen-
tation on PC can process 30 frames per second, providing 
real-time performance for interaction design. Future work 
is needed to deploy the algorithms on commodity smart-
phone devices. Thanks to the enhanced sensing capabilities, 
HandSee expands the design space of full hand interaction. 
We demonstrate a set of novel applications that are highly 
accepted by users. We believe HandSee will open new doors 
and enable more convenient and expressive interactions on 
smartphones. 
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